Whakaoti mō a, c
a=-37.5
c=88.5
Tohaina
Kua tāruatia ki te papatopenga
51=a\times 1+c
Whakaarohia te whārite tuatahi. Tātaihia te 2 mā te pū o 0, kia riro ko 1.
a\times 1+c=51
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+c=51
Whakaraupapatia anō ngā kīanga tau.
13.5=a\times 2+c
Whakaarohia te whārite tuarua. Tātaihia te 2 mā te pū o 1, kia riro ko 2.
a\times 2+c=13.5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+c=51,2a+c=13.5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+c=51
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-c+51
Me tango c mai i ngā taha e rua o te whārite.
2\left(-c+51\right)+c=13.5
Whakakapia te -c+51 mō te a ki tērā atu whārite, 2a+c=13.5.
-2c+102+c=13.5
Whakareatia 2 ki te -c+51.
-c+102=13.5
Tāpiri -2c ki te c.
-c=-88.5
Me tango 102 mai i ngā taha e rua o te whārite.
c=88.5
Whakawehea ngā taha e rua ki te -1.
a=-88.5+51
Whakaurua te 88.5 mō c ki a=-c+51. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-37.5
Tāpiri 51 ki te -88.5.
a=-37.5,c=88.5
Kua oti te pūnaha te whakatau.
51=a\times 1+c
Whakaarohia te whārite tuatahi. Tātaihia te 2 mā te pū o 0, kia riro ko 1.
a\times 1+c=51
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+c=51
Whakaraupapatia anō ngā kīanga tau.
13.5=a\times 2+c
Whakaarohia te whārite tuarua. Tātaihia te 2 mā te pū o 1, kia riro ko 2.
a\times 2+c=13.5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+c=51,2a+c=13.5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}a\\c\end{matrix}\right)=\left(\begin{matrix}51\\13.5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}a\\c\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}51\\13.5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\c\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}51\\13.5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\c\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}51\\13.5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\c\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2}&-\frac{1}{1-2}\\-\frac{2}{1-2}&\frac{1}{1-2}\end{matrix}\right)\left(\begin{matrix}51\\13.5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\c\end{matrix}\right)=\left(\begin{matrix}-1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}51\\13.5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\c\end{matrix}\right)=\left(\begin{matrix}-51+13.5\\2\times 51-13.5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\c\end{matrix}\right)=\left(\begin{matrix}-37.5\\88.5\end{matrix}\right)
Mahia ngā tātaitanga.
a=-37.5,c=88.5
Tangohia ngā huānga poukapa a me c.
51=a\times 1+c
Whakaarohia te whārite tuatahi. Tātaihia te 2 mā te pū o 0, kia riro ko 1.
a\times 1+c=51
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+c=51
Whakaraupapatia anō ngā kīanga tau.
13.5=a\times 2+c
Whakaarohia te whārite tuarua. Tātaihia te 2 mā te pū o 1, kia riro ko 2.
a\times 2+c=13.5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+c=51,2a+c=13.5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
a-2a+c-c=51-13.5
Me tango 2a+c=13.5 mai i a+c=51 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
a-2a=51-13.5
Tāpiri c ki te -c. Ka whakakore atu ngā kupu c me -c, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-a=51-13.5
Tāpiri a ki te -2a.
-a=37.5
Tāpiri 51 ki te -13.5.
a=-37.5
Whakawehea ngā taha e rua ki te -1.
2\left(-37.5\right)+c=13.5
Whakaurua te -37.5 mō a ki 2a+c=13.5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō c hāngai tonu.
-75+c=13.5
Whakareatia 2 ki te -37.5.
c=88.5
Me tāpiri 75 ki ngā taha e rua o te whārite.
a=-37.5,c=88.5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}