Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+5y=6,x+7y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+5y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-5y+6
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-5y+6\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{5}{4}y+\frac{3}{2}
Whakareatia \frac{1}{4} ki te -5y+6.
-\frac{5}{4}y+\frac{3}{2}+7y=3
Whakakapia te -\frac{5y}{4}+\frac{3}{2} mō te x ki tērā atu whārite, x+7y=3.
\frac{23}{4}y+\frac{3}{2}=3
Tāpiri -\frac{5y}{4} ki te 7y.
\frac{23}{4}y=\frac{3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
y=\frac{6}{23}
Whakawehea ngā taha e rua o te whārite ki te \frac{23}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{4}\times \frac{6}{23}+\frac{3}{2}
Whakaurua te \frac{6}{23} mō y ki x=-\frac{5}{4}y+\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{15}{46}+\frac{3}{2}
Whakareatia -\frac{5}{4} ki te \frac{6}{23} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{27}{23}
Tāpiri \frac{3}{2} ki te -\frac{15}{46} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{27}{23},y=\frac{6}{23}
Kua oti te pūnaha te whakatau.
4x+5y=6,x+7y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&5\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}4&5\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&5\\1&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{4\times 7-5}&-\frac{5}{4\times 7-5}\\-\frac{1}{4\times 7-5}&\frac{4}{4\times 7-5}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{23}&-\frac{5}{23}\\-\frac{1}{23}&\frac{4}{23}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{23}\times 6-\frac{5}{23}\times 3\\-\frac{1}{23}\times 6+\frac{4}{23}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{23}\\\frac{6}{23}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{27}{23},y=\frac{6}{23}
Tangohia ngā huānga poukapa x me y.
4x+5y=6,x+7y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+5y=6,4x+4\times 7y=4\times 3
Kia ōrite ai a 4x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
4x+5y=6,4x+28y=12
Whakarūnātia.
4x-4x+5y-28y=6-12
Me tango 4x+28y=12 mai i 4x+5y=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y-28y=6-12
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-23y=6-12
Tāpiri 5y ki te -28y.
-23y=-6
Tāpiri 6 ki te -12.
y=\frac{6}{23}
Whakawehea ngā taha e rua ki te -23.
x+7\times \frac{6}{23}=3
Whakaurua te \frac{6}{23} mō y ki x+7y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{42}{23}=3
Whakareatia 7 ki te \frac{6}{23}.
x=\frac{27}{23}
Me tango \frac{42}{23} mai i ngā taha e rua o te whārite.
x=\frac{27}{23},y=\frac{6}{23}
Kua oti te pūnaha te whakatau.