Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+3y=13,x+3y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+3y=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-3y+13
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-3y+13\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{3}{4}y+\frac{13}{4}
Whakareatia \frac{1}{4} ki te -3y+13.
-\frac{3}{4}y+\frac{13}{4}+3y=10
Whakakapia te \frac{-3y+13}{4} mō te x ki tērā atu whārite, x+3y=10.
\frac{9}{4}y+\frac{13}{4}=10
Tāpiri -\frac{3y}{4} ki te 3y.
\frac{9}{4}y=\frac{27}{4}
Me tango \frac{13}{4} mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{9}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{4}\times 3+\frac{13}{4}
Whakaurua te 3 mō y ki x=-\frac{3}{4}y+\frac{13}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-9+13}{4}
Whakareatia -\frac{3}{4} ki te 3.
x=1
Tāpiri \frac{13}{4} ki te -\frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=3
Kua oti te pūnaha te whakatau.
4x+3y=13,x+3y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&3\\1&3\end{matrix}\right))\left(\begin{matrix}4&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&3\end{matrix}\right))\left(\begin{matrix}13\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&3\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&3\end{matrix}\right))\left(\begin{matrix}13\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&3\end{matrix}\right))\left(\begin{matrix}13\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-3}&-\frac{3}{4\times 3-3}\\-\frac{1}{4\times 3-3}&\frac{4}{4\times 3-3}\end{matrix}\right)\left(\begin{matrix}13\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\-\frac{1}{9}&\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}13\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 13-\frac{1}{3}\times 10\\-\frac{1}{9}\times 13+\frac{4}{9}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=3
Tangohia ngā huānga poukapa x me y.
4x+3y=13,x+3y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x-x+3y-3y=13-10
Me tango x+3y=10 mai i 4x+3y=13 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4x-x=13-10
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3x=13-10
Tāpiri 4x ki te -x.
3x=3
Tāpiri 13 ki te -10.
x=1
Whakawehea ngā taha e rua ki te 3.
1+3y=10
Whakaurua te 1 mō x ki x+3y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
3y=9
Me tango 1 mai i ngā taha e rua o te whārite.
x=1,y=3
Kua oti te pūnaha te whakatau.