Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+2y=8,16x-y=14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+2y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-2y+8
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-2y+8\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{2}y+2
Whakareatia \frac{1}{4} ki te -2y+8.
16\left(-\frac{1}{2}y+2\right)-y=14
Whakakapia te -\frac{y}{2}+2 mō te x ki tērā atu whārite, 16x-y=14.
-8y+32-y=14
Whakareatia 16 ki te -\frac{y}{2}+2.
-9y+32=14
Tāpiri -8y ki te -y.
-9y=-18
Me tango 32 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te -9.
x=-\frac{1}{2}\times 2+2
Whakaurua te 2 mō y ki x=-\frac{1}{2}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1+2
Whakareatia -\frac{1}{2} ki te 2.
x=1
Tāpiri 2 ki te -1.
x=1,y=2
Kua oti te pūnaha te whakatau.
4x+2y=8,16x-y=14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&2\\16&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}4&2\\16&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&2\\16&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-2\times 16}&-\frac{2}{4\left(-1\right)-2\times 16}\\-\frac{16}{4\left(-1\right)-2\times 16}&\frac{4}{4\left(-1\right)-2\times 16}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{36}&\frac{1}{18}\\\frac{4}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{36}\times 8+\frac{1}{18}\times 14\\\frac{4}{9}\times 8-\frac{1}{9}\times 14\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=2
Tangohia ngā huānga poukapa x me y.
4x+2y=8,16x-y=14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
16\times 4x+16\times 2y=16\times 8,4\times 16x+4\left(-1\right)y=4\times 14
Kia ōrite ai a 4x me 16x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 16 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
64x+32y=128,64x-4y=56
Whakarūnātia.
64x-64x+32y+4y=128-56
Me tango 64x-4y=56 mai i 64x+32y=128 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
32y+4y=128-56
Tāpiri 64x ki te -64x. Ka whakakore atu ngā kupu 64x me -64x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
36y=128-56
Tāpiri 32y ki te 4y.
36y=72
Tāpiri 128 ki te -56.
y=2
Whakawehea ngā taha e rua ki te 36.
16x-2=14
Whakaurua te 2 mō y ki 16x-y=14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
16x=16
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 16.
x=1,y=2
Kua oti te pūnaha te whakatau.