Whakaoti mō x, y
x=0
y=25
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+2y=50,x+y=25
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+2y=50
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-2y+50
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-2y+50\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{2}y+\frac{25}{2}
Whakareatia \frac{1}{4} ki te -2y+50.
-\frac{1}{2}y+\frac{25}{2}+y=25
Whakakapia te \frac{-y+25}{2} mō te x ki tērā atu whārite, x+y=25.
\frac{1}{2}y+\frac{25}{2}=25
Tāpiri -\frac{y}{2} ki te y.
\frac{1}{2}y=\frac{25}{2}
Me tango \frac{25}{2} mai i ngā taha e rua o te whārite.
y=25
Me whakarea ngā taha e rua ki te 2.
x=-\frac{1}{2}\times 25+\frac{25}{2}
Whakaurua te 25 mō y ki x=-\frac{1}{2}y+\frac{25}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-25+25}{2}
Whakareatia -\frac{1}{2} ki te 25.
x=0
Tāpiri \frac{25}{2} ki te -\frac{25}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=25
Kua oti te pūnaha te whakatau.
4x+2y=50,x+y=25
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\25\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}4&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}50\\25\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}50\\25\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}50\\25\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-2}&-\frac{2}{4-2}\\-\frac{1}{4-2}&\frac{4}{4-2}\end{matrix}\right)\left(\begin{matrix}50\\25\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-1\\-\frac{1}{2}&2\end{matrix}\right)\left(\begin{matrix}50\\25\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 50-25\\-\frac{1}{2}\times 50+2\times 25\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\25\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=25
Tangohia ngā huānga poukapa x me y.
4x+2y=50,x+y=25
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+2y=50,4x+4y=4\times 25
Kia ōrite ai a 4x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
4x+2y=50,4x+4y=100
Whakarūnātia.
4x-4x+2y-4y=50-100
Me tango 4x+4y=100 mai i 4x+2y=50 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-4y=50-100
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2y=50-100
Tāpiri 2y ki te -4y.
-2y=-50
Tāpiri 50 ki te -100.
y=25
Whakawehea ngā taha e rua ki te -2.
x+25=25
Whakaurua te 25 mō y ki x+y=25. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0
Me tango 25 mai i ngā taha e rua o te whārite.
x=0,y=25
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}