Whakaoti mō x, y
x = \frac{2287}{21} = 108\frac{19}{21} \approx 108.904761905
y = -\frac{2276}{35} = -65\frac{1}{35} \approx -65.028571429
Graph
Tohaina
Kua tāruatia ki te papatopenga
3.9x+y=359.7,-1.8x-y=-131
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3.9x+y=359.7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3.9x=-y+359.7
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{10}{39}\left(-y+359.7\right)
Whakawehea ngā taha e rua o te whārite ki te 3.9, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{10}{39}y+\frac{1199}{13}
Whakareatia \frac{10}{39} ki te -y+359.7.
-1.8\left(-\frac{10}{39}y+\frac{1199}{13}\right)-y=-131
Whakakapia te -\frac{10y}{39}+\frac{1199}{13} mō te x ki tērā atu whārite, -1.8x-y=-131.
\frac{6}{13}y-\frac{10791}{65}-y=-131
Whakareatia -1.8 ki te -\frac{10y}{39}+\frac{1199}{13}.
-\frac{7}{13}y-\frac{10791}{65}=-131
Tāpiri \frac{6y}{13} ki te -y.
-\frac{7}{13}y=\frac{2276}{65}
Me tāpiri \frac{10791}{65} ki ngā taha e rua o te whārite.
y=-\frac{2276}{35}
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{13}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{10}{39}\left(-\frac{2276}{35}\right)+\frac{1199}{13}
Whakaurua te -\frac{2276}{35} mō y ki x=-\frac{10}{39}y+\frac{1199}{13}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4552}{273}+\frac{1199}{13}
Whakareatia -\frac{10}{39} ki te -\frac{2276}{35} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{2287}{21}
Tāpiri \frac{1199}{13} ki te \frac{4552}{273} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{2287}{21},y=-\frac{2276}{35}
Kua oti te pūnaha te whakatau.
3.9x+y=359.7,-1.8x-y=-131
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}359.7\\-131\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right))\left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right))\left(\begin{matrix}359.7\\-131\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right))\left(\begin{matrix}359.7\\-131\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3.9&1\\-1.8&-1\end{matrix}\right))\left(\begin{matrix}359.7\\-131\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3.9\left(-1\right)-\left(-1.8\right)}&-\frac{1}{3.9\left(-1\right)-\left(-1.8\right)}\\-\frac{-1.8}{3.9\left(-1\right)-\left(-1.8\right)}&\frac{3.9}{3.9\left(-1\right)-\left(-1.8\right)}\end{matrix}\right)\left(\begin{matrix}359.7\\-131\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te poukapa kōaro ko \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kia tuhia anō ai te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{21}&\frac{10}{21}\\-\frac{6}{7}&-\frac{13}{7}\end{matrix}\right)\left(\begin{matrix}359.7\\-131\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{21}\times 359.7+\frac{10}{21}\left(-131\right)\\-\frac{6}{7}\times 359.7-\frac{13}{7}\left(-131\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2287}{21}\\-\frac{2276}{35}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{2287}{21},y=-\frac{2276}{35}
Tangohia ngā huānga poukapa x me y.
3.9x+y=359.7,-1.8x-y=-131
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-1.8\times 3.9x-1.8y=-1.8\times 359.7,3.9\left(-1.8\right)x+3.9\left(-1\right)y=3.9\left(-131\right)
Kia ōrite ai a \frac{39x}{10} me -\frac{9x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1.8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.9.
-7.02x-1.8y=-647.46,-7.02x-3.9y=-510.9
Whakarūnātia.
-7.02x+7.02x-1.8y+3.9y=-647.46+510.9
Me tango -7.02x-3.9y=-510.9 mai i -7.02x-1.8y=-647.46 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-1.8y+3.9y=-647.46+510.9
Tāpiri -\frac{351x}{50} ki te \frac{351x}{50}. Ka whakakore atu ngā kupu -\frac{351x}{50} me \frac{351x}{50}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2.1y=-647.46+510.9
Tāpiri -\frac{9y}{5} ki te \frac{39y}{10}.
2.1y=-136.56
Tāpiri -647.46 ki te 510.9 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=-\frac{2276}{35}
Whakawehea ngā taha e rua o te whārite ki te 2.1, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-1.8x-\left(-\frac{2276}{35}\right)=-131
Whakaurua te -\frac{2276}{35} mō y ki -1.8x-y=-131. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-1.8x=-\frac{6861}{35}
Me tango \frac{2276}{35} mai i ngā taha e rua o te whārite.
x=\frac{2287}{21}
Whakawehea ngā taha e rua o te whārite ki te -1.8, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2287}{21},y=-\frac{2276}{35}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}