Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-3y=-4,2x-y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-3y=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=3y-4
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(3y-4\right)
Whakawehea ngā taha e rua ki te 3.
x=y-\frac{4}{3}
Whakareatia \frac{1}{3} ki te 3y-4.
2\left(y-\frac{4}{3}\right)-y=4
Whakakapia te y-\frac{4}{3} mō te x ki tērā atu whārite, 2x-y=4.
2y-\frac{8}{3}-y=4
Whakareatia 2 ki te y-\frac{4}{3}.
y-\frac{8}{3}=4
Tāpiri 2y ki te -y.
y=\frac{20}{3}
Me tāpiri \frac{8}{3} ki ngā taha e rua o te whārite.
x=\frac{20-4}{3}
Whakaurua te \frac{20}{3} mō y ki x=y-\frac{4}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{16}{3}
Tāpiri -\frac{4}{3} ki te \frac{20}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{16}{3},y=\frac{20}{3}
Kua oti te pūnaha te whakatau.
3x-3y=-4,2x-y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}3&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-3\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-3\times 2\right)}&-\frac{-3}{3\left(-1\right)-\left(-3\times 2\right)}\\-\frac{2}{3\left(-1\right)-\left(-3\times 2\right)}&\frac{3}{3\left(-1\right)-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&1\\-\frac{2}{3}&1\end{matrix}\right)\left(\begin{matrix}-4\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-4\right)+4\\-\frac{2}{3}\left(-4\right)+4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{3}\\\frac{20}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{16}{3},y=\frac{20}{3}
Tangohia ngā huānga poukapa x me y.
3x-3y=-4,2x-y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-3\right)y=2\left(-4\right),3\times 2x+3\left(-1\right)y=3\times 4
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-6y=-8,6x-3y=12
Whakarūnātia.
6x-6x-6y+3y=-8-12
Me tango 6x-3y=12 mai i 6x-6y=-8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y+3y=-8-12
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3y=-8-12
Tāpiri -6y ki te 3y.
-3y=-20
Tāpiri -8 ki te -12.
y=\frac{20}{3}
Whakawehea ngā taha e rua ki te -3.
2x-\frac{20}{3}=4
Whakaurua te \frac{20}{3} mō y ki 2x-y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=\frac{32}{3}
Me tāpiri \frac{20}{3} ki ngā taha e rua o te whārite.
x=\frac{16}{3}
Whakawehea ngā taha e rua ki te 2.
x=\frac{16}{3},y=\frac{20}{3}
Kua oti te pūnaha te whakatau.