Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+y=60,x+y=40
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=60
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y+60
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y+60\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y+20
Whakareatia \frac{1}{3} ki te -y+60.
-\frac{1}{3}y+20+y=40
Whakakapia te -\frac{y}{3}+20 mō te x ki tērā atu whārite, x+y=40.
\frac{2}{3}y+20=40
Tāpiri -\frac{y}{3} ki te y.
\frac{2}{3}y=20
Me tango 20 mai i ngā taha e rua o te whārite.
y=30
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\times 30+20
Whakaurua te 30 mō y ki x=-\frac{1}{3}y+20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-10+20
Whakareatia -\frac{1}{3} ki te 30.
x=10
Tāpiri 20 ki te -10.
x=10,y=30
Kua oti te pūnaha te whakatau.
3x+y=60,x+y=40
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\40\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}3&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}60\\40\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}60\\40\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}60\\40\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-1}&-\frac{1}{3-1}\\-\frac{1}{3-1}&\frac{3}{3-1}\end{matrix}\right)\left(\begin{matrix}60\\40\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-\frac{1}{2}&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}60\\40\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 60-\frac{1}{2}\times 40\\-\frac{1}{2}\times 60+\frac{3}{2}\times 40\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\30\end{matrix}\right)
Mahia ngā tātaitanga.
x=10,y=30
Tangohia ngā huānga poukapa x me y.
3x+y=60,x+y=40
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-x+y-y=60-40
Me tango x+y=40 mai i 3x+y=60 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3x-x=60-40
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2x=60-40
Tāpiri 3x ki te -x.
2x=20
Tāpiri 60 ki te -40.
x=10
Whakawehea ngā taha e rua ki te 2.
10+y=40
Whakaurua te 10 mō x ki x+y=40. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=30
Me tango 10 mai i ngā taha e rua o te whārite.
x=10,y=30
Kua oti te pūnaha te whakatau.