Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+y=5,-2x+2y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y+5
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y+5\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y+\frac{5}{3}
Whakareatia \frac{1}{3} ki te -y+5.
-2\left(-\frac{1}{3}y+\frac{5}{3}\right)+2y=7
Whakakapia te \frac{-y+5}{3} mō te x ki tērā atu whārite, -2x+2y=7.
\frac{2}{3}y-\frac{10}{3}+2y=7
Whakareatia -2 ki te \frac{-y+5}{3}.
\frac{8}{3}y-\frac{10}{3}=7
Tāpiri \frac{2y}{3} ki te 2y.
\frac{8}{3}y=\frac{31}{3}
Me tāpiri \frac{10}{3} ki ngā taha e rua o te whārite.
y=\frac{31}{8}
Whakawehea ngā taha e rua o te whārite ki te \frac{8}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\times \frac{31}{8}+\frac{5}{3}
Whakaurua te \frac{31}{8} mō y ki x=-\frac{1}{3}y+\frac{5}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{31}{24}+\frac{5}{3}
Whakareatia -\frac{1}{3} ki te \frac{31}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{3}{8}
Tāpiri \frac{5}{3} ki te -\frac{31}{24} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{3}{8},y=\frac{31}{8}
Kua oti te pūnaha te whakatau.
3x+y=5,-2x+2y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\-2&2\end{matrix}\right))\left(\begin{matrix}3&1\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-2&2\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\-2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-2&2\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-2&2\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\right)}&-\frac{1}{3\times 2-\left(-2\right)}\\-\frac{-2}{3\times 2-\left(-2\right)}&\frac{3}{3\times 2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{8}\\\frac{1}{4}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5-\frac{1}{8}\times 7\\\frac{1}{4}\times 5+\frac{3}{8}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\\\frac{31}{8}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{3}{8},y=\frac{31}{8}
Tangohia ngā huānga poukapa x me y.
3x+y=5,-2x+2y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 3x-2y=-2\times 5,3\left(-2\right)x+3\times 2y=3\times 7
Kia ōrite ai a 3x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-6x-2y=-10,-6x+6y=21
Whakarūnātia.
-6x+6x-2y-6y=-10-21
Me tango -6x+6y=21 mai i -6x-2y=-10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-6y=-10-21
Tāpiri -6x ki te 6x. Ka whakakore atu ngā kupu -6x me 6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-8y=-10-21
Tāpiri -2y ki te -6y.
-8y=-31
Tāpiri -10 ki te -21.
y=\frac{31}{8}
Whakawehea ngā taha e rua ki te -8.
-2x+2\times \frac{31}{8}=7
Whakaurua te \frac{31}{8} mō y ki -2x+2y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x+\frac{31}{4}=7
Whakareatia 2 ki te \frac{31}{8}.
-2x=-\frac{3}{4}
Me tango \frac{31}{4} mai i ngā taha e rua o te whārite.
x=\frac{3}{8}
Whakawehea ngā taha e rua ki te -2.
x=\frac{3}{8},y=\frac{31}{8}
Kua oti te pūnaha te whakatau.