Whakaoti mō x, y
x=-6
y=13
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+y+5=0,-2x-y+1=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y+5=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x+y=-5
Me tango 5 mai i ngā taha e rua o te whārite.
3x=-y-5
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y-5\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y-\frac{5}{3}
Whakareatia \frac{1}{3} ki te -y-5.
-2\left(-\frac{1}{3}y-\frac{5}{3}\right)-y+1=0
Whakakapia te \frac{-y-5}{3} mō te x ki tērā atu whārite, -2x-y+1=0.
\frac{2}{3}y+\frac{10}{3}-y+1=0
Whakareatia -2 ki te \frac{-y-5}{3}.
-\frac{1}{3}y+\frac{10}{3}+1=0
Tāpiri \frac{2y}{3} ki te -y.
-\frac{1}{3}y+\frac{13}{3}=0
Tāpiri \frac{10}{3} ki te 1.
-\frac{1}{3}y=-\frac{13}{3}
Me tango \frac{13}{3} mai i ngā taha e rua o te whārite.
y=13
Me whakarea ngā taha e rua ki te -3.
x=-\frac{1}{3}\times 13-\frac{5}{3}
Whakaurua te 13 mō y ki x=-\frac{1}{3}y-\frac{5}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-13-5}{3}
Whakareatia -\frac{1}{3} ki te 13.
x=-6
Tāpiri -\frac{5}{3} ki te -\frac{13}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-6,y=13
Kua oti te pūnaha te whakatau.
3x+y+5=0,-2x-y+1=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\-2&-1\end{matrix}\right))\left(\begin{matrix}3&1\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-2&-1\end{matrix}\right))\left(\begin{matrix}-5\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\-2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-2&-1\end{matrix}\right))\left(\begin{matrix}-5\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-2&-1\end{matrix}\right))\left(\begin{matrix}-5\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-2\right)}&-\frac{1}{3\left(-1\right)-\left(-2\right)}\\-\frac{-2}{3\left(-1\right)-\left(-2\right)}&\frac{3}{3\left(-1\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-5\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\-2&-3\end{matrix}\right)\left(\begin{matrix}-5\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5-1\\-2\left(-5\right)-3\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\13\end{matrix}\right)
Mahia ngā tātaitanga.
x=-6,y=13
Tangohia ngā huānga poukapa x me y.
3x+y+5=0,-2x-y+1=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 3x-2y-2\times 5=0,3\left(-2\right)x+3\left(-1\right)y+3=0
Kia ōrite ai a 3x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-6x-2y-10=0,-6x-3y+3=0
Whakarūnātia.
-6x+6x-2y+3y-10-3=0
Me tango -6x-3y+3=0 mai i -6x-2y-10=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y+3y-10-3=0
Tāpiri -6x ki te 6x. Ka whakakore atu ngā kupu -6x me 6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y-10-3=0
Tāpiri -2y ki te 3y.
y-13=0
Tāpiri -10 ki te -3.
y=13
Me tāpiri 13 ki ngā taha e rua o te whārite.
-2x-13+1=0
Whakaurua te 13 mō y ki -2x-y+1=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x-12=0
Tāpiri -13 ki te 1.
-2x=12
Me tāpiri 12 ki ngā taha e rua o te whārite.
x=-6
Whakawehea ngā taha e rua ki te -2.
x=-6,y=13
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}