Whakaoti mō x, y
x = \frac{68}{7} = 9\frac{5}{7} \approx 9.714285714
y = -\frac{30}{7} = -4\frac{2}{7} \approx -4.285714286
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+4y=12,x+6y=-16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+4y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-4y+12
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-4y+12\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{4}{3}y+4
Whakareatia \frac{1}{3} ki te -4y+12.
-\frac{4}{3}y+4+6y=-16
Whakakapia te -\frac{4y}{3}+4 mō te x ki tērā atu whārite, x+6y=-16.
\frac{14}{3}y+4=-16
Tāpiri -\frac{4y}{3} ki te 6y.
\frac{14}{3}y=-20
Me tango 4 mai i ngā taha e rua o te whārite.
y=-\frac{30}{7}
Whakawehea ngā taha e rua o te whārite ki te \frac{14}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{4}{3}\left(-\frac{30}{7}\right)+4
Whakaurua te -\frac{30}{7} mō y ki x=-\frac{4}{3}y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{40}{7}+4
Whakareatia -\frac{4}{3} ki te -\frac{30}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{68}{7}
Tāpiri 4 ki te \frac{40}{7}.
x=\frac{68}{7},y=-\frac{30}{7}
Kua oti te pūnaha te whakatau.
3x+4y=12,x+6y=-16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&4\\1&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\-16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&4\\1&6\end{matrix}\right))\left(\begin{matrix}3&4\\1&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&6\end{matrix}\right))\left(\begin{matrix}12\\-16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&4\\1&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&6\end{matrix}\right))\left(\begin{matrix}12\\-16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&6\end{matrix}\right))\left(\begin{matrix}12\\-16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{3\times 6-4}&-\frac{4}{3\times 6-4}\\-\frac{1}{3\times 6-4}&\frac{3}{3\times 6-4}\end{matrix}\right)\left(\begin{matrix}12\\-16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&-\frac{2}{7}\\-\frac{1}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}12\\-16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\times 12-\frac{2}{7}\left(-16\right)\\-\frac{1}{14}\times 12+\frac{3}{14}\left(-16\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{68}{7}\\-\frac{30}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{68}{7},y=-\frac{30}{7}
Tangohia ngā huānga poukapa x me y.
3x+4y=12,x+6y=-16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+4y=12,3x+3\times 6y=3\left(-16\right)
Kia ōrite ai a 3x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3x+4y=12,3x+18y=-48
Whakarūnātia.
3x-3x+4y-18y=12+48
Me tango 3x+18y=-48 mai i 3x+4y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-18y=12+48
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-14y=12+48
Tāpiri 4y ki te -18y.
-14y=60
Tāpiri 12 ki te 48.
y=-\frac{30}{7}
Whakawehea ngā taha e rua ki te -14.
x+6\left(-\frac{30}{7}\right)=-16
Whakaurua te -\frac{30}{7} mō y ki x+6y=-16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{180}{7}=-16
Whakareatia 6 ki te -\frac{30}{7}.
x=\frac{68}{7}
Me tāpiri \frac{180}{7} ki ngā taha e rua o te whārite.
x=\frac{68}{7},y=-\frac{30}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}