Whakaoti mō x, y, z
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
y=-\frac{3}{4}=-0.75
z=-\frac{1}{2}=-0.5
Tohaina
Kua tāruatia ki te papatopenga
-3x+8y-z=2 4x+2y-3z=-10 3x+2y-2z=-8
Me raupapa anō ngā whārite.
z=-3x+8y-2
Me whakaoti te -3x+8y-z=2 mō z.
4x+2y-3\left(-3x+8y-2\right)=-10 3x+2y-2\left(-3x+8y-2\right)=-8
Whakakapia te -3x+8y-2 mō te z i te whārite tuarua me te tuatoru.
y=\frac{13}{22}x+\frac{8}{11} x=-\frac{4}{3}+\frac{14}{9}y
Me whakaoti ēnei whārite mō y me x takitahi.
x=-\frac{4}{3}+\frac{14}{9}\left(\frac{13}{22}x+\frac{8}{11}\right)
Whakakapia te \frac{13}{22}x+\frac{8}{11} mō te y i te whārite x=-\frac{4}{3}+\frac{14}{9}y.
x=-\frac{5}{2}
Me whakaoti te x=-\frac{4}{3}+\frac{14}{9}\left(\frac{13}{22}x+\frac{8}{11}\right) mō x.
y=\frac{13}{22}\left(-\frac{5}{2}\right)+\frac{8}{11}
Whakakapia te -\frac{5}{2} mō te x i te whārite y=\frac{13}{22}x+\frac{8}{11}.
y=-\frac{3}{4}
Tātaitia te y i te y=\frac{13}{22}\left(-\frac{5}{2}\right)+\frac{8}{11}.
z=-3\left(-\frac{5}{2}\right)+8\left(-\frac{3}{4}\right)-2
Whakakapia te -\frac{3}{4} mō te y me te -\frac{5}{2} mō x i te whārite z=-3x+8y-2.
z=-\frac{1}{2}
Tātaitia te z i te z=-3\left(-\frac{5}{2}\right)+8\left(-\frac{3}{4}\right)-2.
x=-\frac{5}{2} y=-\frac{3}{4} z=-\frac{1}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}