Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+2y=32,365x+226y=267.6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+2y=32
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-2y+32
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-2y+32\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{2}{3}y+\frac{32}{3}
Whakareatia \frac{1}{3} ki te -2y+32.
365\left(-\frac{2}{3}y+\frac{32}{3}\right)+226y=267.6
Whakakapia te \frac{-2y+32}{3} mō te x ki tērā atu whārite, 365x+226y=267.6.
-\frac{730}{3}y+\frac{11680}{3}+226y=267.6
Whakareatia 365 ki te \frac{-2y+32}{3}.
-\frac{52}{3}y+\frac{11680}{3}=267.6
Tāpiri -\frac{730y}{3} ki te 226y.
-\frac{52}{3}y=-\frac{54386}{15}
Me tango \frac{11680}{3} mai i ngā taha e rua o te whārite.
y=\frac{27193}{130}
Whakawehea ngā taha e rua o te whārite ki te -\frac{52}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{3}\times \frac{27193}{130}+\frac{32}{3}
Whakaurua te \frac{27193}{130} mō y ki x=-\frac{2}{3}y+\frac{32}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{27193}{195}+\frac{32}{3}
Whakareatia -\frac{2}{3} ki te \frac{27193}{130} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{8371}{65}
Tāpiri \frac{32}{3} ki te -\frac{27193}{195} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{8371}{65},y=\frac{27193}{130}
Kua oti te pūnaha te whakatau.
3x+2y=32,365x+226y=267.6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\365&226\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}32\\267.6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\365&226\end{matrix}\right))\left(\begin{matrix}3&2\\365&226\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\365&226\end{matrix}\right))\left(\begin{matrix}32\\267.6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\365&226\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\365&226\end{matrix}\right))\left(\begin{matrix}32\\267.6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\365&226\end{matrix}\right))\left(\begin{matrix}32\\267.6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{226}{3\times 226-2\times 365}&-\frac{2}{3\times 226-2\times 365}\\-\frac{365}{3\times 226-2\times 365}&\frac{3}{3\times 226-2\times 365}\end{matrix}\right)\left(\begin{matrix}32\\267.6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{113}{26}&\frac{1}{26}\\\frac{365}{52}&-\frac{3}{52}\end{matrix}\right)\left(\begin{matrix}32\\267.6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{113}{26}\times 32+\frac{1}{26}\times 267.6\\\frac{365}{52}\times 32-\frac{3}{52}\times 267.6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8371}{65}\\\frac{27193}{130}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{8371}{65},y=\frac{27193}{130}
Tangohia ngā huānga poukapa x me y.
3x+2y=32,365x+226y=267.6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
365\times 3x+365\times 2y=365\times 32,3\times 365x+3\times 226y=3\times 267.6
Kia ōrite ai a 3x me 365x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 365 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
1095x+730y=11680,1095x+678y=802.8
Whakarūnātia.
1095x-1095x+730y-678y=11680-802.8
Me tango 1095x+678y=802.8 mai i 1095x+730y=11680 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
730y-678y=11680-802.8
Tāpiri 1095x ki te -1095x. Ka whakakore atu ngā kupu 1095x me -1095x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
52y=11680-802.8
Tāpiri 730y ki te -678y.
52y=10877.2
Tāpiri 11680 ki te -802.8.
y=\frac{27193}{130}
Whakawehea ngā taha e rua ki te 52.
365x+226\times \frac{27193}{130}=267.6
Whakaurua te \frac{27193}{130} mō y ki 365x+226y=267.6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
365x+\frac{3072809}{65}=267.6
Whakareatia 226 ki te \frac{27193}{130}.
365x=-\frac{611083}{13}
Me tango \frac{3072809}{65} mai i ngā taha e rua o te whārite.
x=-\frac{8371}{65}
Whakawehea ngā taha e rua ki te 365.
x=-\frac{8371}{65},y=\frac{27193}{130}
Kua oti te pūnaha te whakatau.