Whakaoti mō x, y, z
x=1
y=-1
z=1
Tohaina
Kua tāruatia ki te papatopenga
y=-20x+2z+17
Me whakaoti te 20x+y-2z=17 mō y.
3x+20\left(-20x+2z+17\right)-z=-18 2x-3\left(-20x+2z+17\right)+20z=25
Whakakapia te -20x+2z+17 mō te y i te whārite tuarua me te tuatoru.
x=\frac{39}{397}z+\frac{358}{397} z=\frac{38}{7}-\frac{31}{7}x
Me whakaoti ēnei whārite mō x me z takitahi.
z=\frac{38}{7}-\frac{31}{7}\left(\frac{39}{397}z+\frac{358}{397}\right)
Whakakapia te \frac{39}{397}z+\frac{358}{397} mō te x i te whārite z=\frac{38}{7}-\frac{31}{7}x.
z=1
Me whakaoti te z=\frac{38}{7}-\frac{31}{7}\left(\frac{39}{397}z+\frac{358}{397}\right) mō z.
x=\frac{39}{397}\times 1+\frac{358}{397}
Whakakapia te 1 mō te z i te whārite x=\frac{39}{397}z+\frac{358}{397}.
x=1
Tātaitia te x i te x=\frac{39}{397}\times 1+\frac{358}{397}.
y=-20+2\times 1+17
Whakakapia te 1 mō te x me te 1 mō z i te whārite y=-20x+2z+17.
y=-1
Tātaitia te y i te y=-20+2\times 1+17.
x=1 y=-1 z=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}