Whakaoti mō x, y
x=10
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2.7x+3.1y=42.5,x+y=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2.7x+3.1y=42.5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2.7x=-3.1y+42.5
Me tango \frac{31y}{10} mai i ngā taha e rua o te whārite.
x=\frac{10}{27}\left(-3.1y+42.5\right)
Whakawehea ngā taha e rua o te whārite ki te 2.7, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{31}{27}y+\frac{425}{27}
Whakareatia \frac{10}{27} ki te -\frac{31y}{10}+42.5.
-\frac{31}{27}y+\frac{425}{27}+y=15
Whakakapia te \frac{-31y+425}{27} mō te x ki tērā atu whārite, x+y=15.
-\frac{4}{27}y+\frac{425}{27}=15
Tāpiri -\frac{31y}{27} ki te y.
-\frac{4}{27}y=-\frac{20}{27}
Me tango \frac{425}{27} mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua o te whārite ki te -\frac{4}{27}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{31}{27}\times 5+\frac{425}{27}
Whakaurua te 5 mō y ki x=-\frac{31}{27}y+\frac{425}{27}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-155+425}{27}
Whakareatia -\frac{31}{27} ki te 5.
x=10
Tāpiri \frac{425}{27} ki te -\frac{155}{27} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=10,y=5
Kua oti te pūnaha te whakatau.
2.7x+3.1y=42.5,x+y=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}42.5\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right))\left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right))\left(\begin{matrix}42.5\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right))\left(\begin{matrix}42.5\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2.7&3.1\\1&1\end{matrix}\right))\left(\begin{matrix}42.5\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2.7-3.1}&-\frac{3.1}{2.7-3.1}\\-\frac{1}{2.7-3.1}&\frac{2.7}{2.7-3.1}\end{matrix}\right)\left(\begin{matrix}42.5\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2.5&7.75\\2.5&-6.75\end{matrix}\right)\left(\begin{matrix}42.5\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2.5\times 42.5+7.75\times 15\\2.5\times 42.5-6.75\times 15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=10,y=5
Tangohia ngā huānga poukapa x me y.
2.7x+3.1y=42.5,x+y=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2.7x+3.1y=42.5,2.7x+2.7y=2.7\times 15
Kia ōrite ai a \frac{27x}{10} me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.7.
2.7x+3.1y=42.5,2.7x+2.7y=40.5
Whakarūnātia.
2.7x-2.7x+3.1y-2.7y=\frac{85-81}{2}
Me tango 2.7x+2.7y=40.5 mai i 2.7x+3.1y=42.5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3.1y-2.7y=\frac{85-81}{2}
Tāpiri \frac{27x}{10} ki te -\frac{27x}{10}. Ka whakakore atu ngā kupu \frac{27x}{10} me -\frac{27x}{10}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
0.4y=\frac{85-81}{2}
Tāpiri \frac{31y}{10} ki te -\frac{27y}{10}.
0.4y=2
Tāpiri 42.5 ki te -40.5 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=5
Whakawehea ngā taha e rua o te whārite ki te 0.4, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x+5=15
Whakaurua te 5 mō y ki x+y=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=10
Me tango 5 mai i ngā taha e rua o te whārite.
x=10,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}