Whakaoti mō x, y
x=-6
y=-9
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-y=-3,4x-3y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y-3
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(y-3\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}y-\frac{3}{2}
Whakareatia \frac{1}{2} ki te y-3.
4\left(\frac{1}{2}y-\frac{3}{2}\right)-3y=3
Whakakapia te \frac{-3+y}{2} mō te x ki tērā atu whārite, 4x-3y=3.
2y-6-3y=3
Whakareatia 4 ki te \frac{-3+y}{2}.
-y-6=3
Tāpiri 2y ki te -3y.
-y=9
Me tāpiri 6 ki ngā taha e rua o te whārite.
y=-9
Whakawehea ngā taha e rua ki te -1.
x=\frac{1}{2}\left(-9\right)-\frac{3}{2}
Whakaurua te -9 mō y ki x=\frac{1}{2}y-\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-9-3}{2}
Whakareatia \frac{1}{2} ki te -9.
x=-6
Tāpiri -\frac{3}{2} ki te -\frac{9}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-6,y=-9
Kua oti te pūnaha te whakatau.
2x-y=-3,4x-3y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}2&-1\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-\left(-4\right)}&-\frac{-1}{2\left(-3\right)-\left(-4\right)}\\-\frac{4}{2\left(-3\right)-\left(-4\right)}&\frac{2}{2\left(-3\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{1}{2}\\2&-1\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\left(-3\right)-\frac{1}{2}\times 3\\2\left(-3\right)-3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-9\end{matrix}\right)
Mahia ngā tātaitanga.
x=-6,y=-9
Tangohia ngā huānga poukapa x me y.
2x-y=-3,4x-3y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4\left(-1\right)y=4\left(-3\right),2\times 4x+2\left(-3\right)y=2\times 3
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x-4y=-12,8x-6y=6
Whakarūnātia.
8x-8x-4y+6y=-12-6
Me tango 8x-6y=6 mai i 8x-4y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y+6y=-12-6
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=-12-6
Tāpiri -4y ki te 6y.
2y=-18
Tāpiri -12 ki te -6.
y=-9
Whakawehea ngā taha e rua ki te 2.
4x-3\left(-9\right)=3
Whakaurua te -9 mō y ki 4x-3y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+27=3
Whakareatia -3 ki te -9.
4x=-24
Me tango 27 mai i ngā taha e rua o te whārite.
x=-6
Whakawehea ngā taha e rua ki te 4.
x=-6,y=-9
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}