Whakaoti mō x, y
x = \frac{9}{8} = 1\frac{1}{8} = 1.125
y = \frac{11}{4} = 2\frac{3}{4} = 2.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+y=5,-4x+6y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+5
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+5\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+\frac{5}{2}
Whakareatia \frac{1}{2} ki te -y+5.
-4\left(-\frac{1}{2}y+\frac{5}{2}\right)+6y=12
Whakakapia te \frac{-y+5}{2} mō te x ki tērā atu whārite, -4x+6y=12.
2y-10+6y=12
Whakareatia -4 ki te \frac{-y+5}{2}.
8y-10=12
Tāpiri 2y ki te 6y.
8y=22
Me tāpiri 10 ki ngā taha e rua o te whārite.
y=\frac{11}{4}
Whakawehea ngā taha e rua ki te 8.
x=-\frac{1}{2}\times \frac{11}{4}+\frac{5}{2}
Whakaurua te \frac{11}{4} mō y ki x=-\frac{1}{2}y+\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{11}{8}+\frac{5}{2}
Whakareatia -\frac{1}{2} ki te \frac{11}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{9}{8}
Tāpiri \frac{5}{2} ki te -\frac{11}{8} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{9}{8},y=\frac{11}{4}
Kua oti te pūnaha te whakatau.
2x+y=5,-4x+6y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\-4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\-4&6\end{matrix}\right))\left(\begin{matrix}2&1\\-4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&6\end{matrix}\right))\left(\begin{matrix}5\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\-4&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&6\end{matrix}\right))\left(\begin{matrix}5\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&6\end{matrix}\right))\left(\begin{matrix}5\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-\left(-4\right)}&-\frac{1}{2\times 6-\left(-4\right)}\\-\frac{-4}{2\times 6-\left(-4\right)}&\frac{2}{2\times 6-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&-\frac{1}{16}\\\frac{1}{4}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}5\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 5-\frac{1}{16}\times 12\\\frac{1}{4}\times 5+\frac{1}{8}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{8}\\\frac{11}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{9}{8},y=\frac{11}{4}
Tangohia ngā huānga poukapa x me y.
2x+y=5,-4x+6y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\times 2x-4y=-4\times 5,2\left(-4\right)x+2\times 6y=2\times 12
Kia ōrite ai a 2x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-8x-4y=-20,-8x+12y=24
Whakarūnātia.
-8x+8x-4y-12y=-20-24
Me tango -8x+12y=24 mai i -8x-4y=-20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-12y=-20-24
Tāpiri -8x ki te 8x. Ka whakakore atu ngā kupu -8x me 8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-16y=-20-24
Tāpiri -4y ki te -12y.
-16y=-44
Tāpiri -20 ki te -24.
y=\frac{11}{4}
Whakawehea ngā taha e rua ki te -16.
-4x+6\times \frac{11}{4}=12
Whakaurua te \frac{11}{4} mō y ki -4x+6y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x+\frac{33}{2}=12
Whakareatia 6 ki te \frac{11}{4}.
-4x=-\frac{9}{2}
Me tango \frac{33}{2} mai i ngā taha e rua o te whārite.
x=\frac{9}{8}
Whakawehea ngā taha e rua ki te -4.
x=\frac{9}{8},y=\frac{11}{4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}