Whakaoti mō x, y
x = \frac{11}{6} = 1\frac{5}{6} \approx 1.833333333
y=-\frac{2}{3}\approx -0.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+y=3,-2x-4y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+3
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+3\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+\frac{3}{2}
Whakareatia \frac{1}{2} ki te -y+3.
-2\left(-\frac{1}{2}y+\frac{3}{2}\right)-4y=-1
Whakakapia te \frac{-y+3}{2} mō te x ki tērā atu whārite, -2x-4y=-1.
y-3-4y=-1
Whakareatia -2 ki te \frac{-y+3}{2}.
-3y-3=-1
Tāpiri y ki te -4y.
-3y=2
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=-\frac{2}{3}
Whakawehea ngā taha e rua ki te -3.
x=-\frac{1}{2}\left(-\frac{2}{3}\right)+\frac{3}{2}
Whakaurua te -\frac{2}{3} mō y ki x=-\frac{1}{2}y+\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1}{3}+\frac{3}{2}
Whakareatia -\frac{1}{2} ki te -\frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{11}{6}
Tāpiri \frac{3}{2} ki te \frac{1}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{11}{6},y=-\frac{2}{3}
Kua oti te pūnaha te whakatau.
2x+y=3,-2x-4y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\-2&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-\left(-2\right)}&-\frac{1}{2\left(-4\right)-\left(-2\right)}\\-\frac{-2}{2\left(-4\right)-\left(-2\right)}&\frac{2}{2\left(-4\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{6}\\-\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 3+\frac{1}{6}\left(-1\right)\\-\frac{1}{3}\times 3-\frac{1}{3}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{6}\\-\frac{2}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{11}{6},y=-\frac{2}{3}
Tangohia ngā huānga poukapa x me y.
2x+y=3,-2x-4y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 2x-2y=-2\times 3,2\left(-2\right)x+2\left(-4\right)y=2\left(-1\right)
Kia ōrite ai a 2x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-4x-2y=-6,-4x-8y=-2
Whakarūnātia.
-4x+4x-2y+8y=-6+2
Me tango -4x-8y=-2 mai i -4x-2y=-6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y+8y=-6+2
Tāpiri -4x ki te 4x. Ka whakakore atu ngā kupu -4x me 4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6y=-6+2
Tāpiri -2y ki te 8y.
6y=-4
Tāpiri -6 ki te 2.
y=-\frac{2}{3}
Whakawehea ngā taha e rua ki te 6.
-2x-4\left(-\frac{2}{3}\right)=-1
Whakaurua te -\frac{2}{3} mō y ki -2x-4y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x+\frac{8}{3}=-1
Whakareatia -4 ki te -\frac{2}{3}.
-2x=-\frac{11}{3}
Me tango \frac{8}{3} mai i ngā taha e rua o te whārite.
x=\frac{11}{6}
Whakawehea ngā taha e rua ki te -2.
x=\frac{11}{6},y=-\frac{2}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}