Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+9y=-7,6x-3y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+9y=-7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-9y-7
Me tango 9y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-9y-7\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{9}{2}y-\frac{7}{2}
Whakareatia \frac{1}{2} ki te -9y-7.
6\left(-\frac{9}{2}y-\frac{7}{2}\right)-3y=9
Whakakapia te \frac{-9y-7}{2} mō te x ki tērā atu whārite, 6x-3y=9.
-27y-21-3y=9
Whakareatia 6 ki te \frac{-9y-7}{2}.
-30y-21=9
Tāpiri -27y ki te -3y.
-30y=30
Me tāpiri 21 ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te -30.
x=-\frac{9}{2}\left(-1\right)-\frac{7}{2}
Whakaurua te -1 mō y ki x=-\frac{9}{2}y-\frac{7}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{9-7}{2}
Whakareatia -\frac{9}{2} ki te -1.
x=1
Tāpiri -\frac{7}{2} ki te \frac{9}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-1
Kua oti te pūnaha te whakatau.
2x+9y=-7,6x-3y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&9\\6&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&9\\6&-3\end{matrix}\right))\left(\begin{matrix}2&9\\6&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&9\\6&-3\end{matrix}\right))\left(\begin{matrix}-7\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&9\\6&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&9\\6&-3\end{matrix}\right))\left(\begin{matrix}-7\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&9\\6&-3\end{matrix}\right))\left(\begin{matrix}-7\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-9\times 6}&-\frac{9}{2\left(-3\right)-9\times 6}\\-\frac{6}{2\left(-3\right)-9\times 6}&\frac{2}{2\left(-3\right)-9\times 6}\end{matrix}\right)\left(\begin{matrix}-7\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&\frac{3}{20}\\\frac{1}{10}&-\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}-7\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\left(-7\right)+\frac{3}{20}\times 9\\\frac{1}{10}\left(-7\right)-\frac{1}{30}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-1
Tangohia ngā huānga poukapa x me y.
2x+9y=-7,6x-3y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 2x+6\times 9y=6\left(-7\right),2\times 6x+2\left(-3\right)y=2\times 9
Kia ōrite ai a 2x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
12x+54y=-42,12x-6y=18
Whakarūnātia.
12x-12x+54y+6y=-42-18
Me tango 12x-6y=18 mai i 12x+54y=-42 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
54y+6y=-42-18
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
60y=-42-18
Tāpiri 54y ki te 6y.
60y=-60
Tāpiri -42 ki te -18.
y=-1
Whakawehea ngā taha e rua ki te 60.
6x-3\left(-1\right)=9
Whakaurua te -1 mō y ki 6x-3y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x+3=9
Whakareatia -3 ki te -1.
6x=6
Me tango 3 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 6.
x=1,y=-1
Kua oti te pūnaha te whakatau.