Whakaoti mō x, y
x = \frac{168}{11} = 15\frac{3}{11} \approx 15.272727273
y = \frac{73}{11} = 6\frac{7}{11} \approx 6.636363636
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+7y=77,x-2y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+7y=77
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-7y+77
Me tango 7y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-7y+77\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{7}{2}y+\frac{77}{2}
Whakareatia \frac{1}{2} ki te -7y+77.
-\frac{7}{2}y+\frac{77}{2}-2y=2
Whakakapia te \frac{-7y+77}{2} mō te x ki tērā atu whārite, x-2y=2.
-\frac{11}{2}y+\frac{77}{2}=2
Tāpiri -\frac{7y}{2} ki te -2y.
-\frac{11}{2}y=-\frac{73}{2}
Me tango \frac{77}{2} mai i ngā taha e rua o te whārite.
y=\frac{73}{11}
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{7}{2}\times \frac{73}{11}+\frac{77}{2}
Whakaurua te \frac{73}{11} mō y ki x=-\frac{7}{2}y+\frac{77}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{511}{22}+\frac{77}{2}
Whakareatia -\frac{7}{2} ki te \frac{73}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{168}{11}
Tāpiri \frac{77}{2} ki te -\frac{511}{22} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{168}{11},y=\frac{73}{11}
Kua oti te pūnaha te whakatau.
2x+7y=77,x-2y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&7\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}77\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&7\\1&-2\end{matrix}\right))\left(\begin{matrix}2&7\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\1&-2\end{matrix}\right))\left(\begin{matrix}77\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&7\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\1&-2\end{matrix}\right))\left(\begin{matrix}77\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\1&-2\end{matrix}\right))\left(\begin{matrix}77\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-7}&-\frac{7}{2\left(-2\right)-7}\\-\frac{1}{2\left(-2\right)-7}&\frac{2}{2\left(-2\right)-7}\end{matrix}\right)\left(\begin{matrix}77\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{7}{11}\\\frac{1}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}77\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 77+\frac{7}{11}\times 2\\\frac{1}{11}\times 77-\frac{2}{11}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{168}{11}\\\frac{73}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{168}{11},y=\frac{73}{11}
Tangohia ngā huānga poukapa x me y.
2x+7y=77,x-2y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+7y=77,2x+2\left(-2\right)y=2\times 2
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+7y=77,2x-4y=4
Whakarūnātia.
2x-2x+7y+4y=77-4
Me tango 2x-4y=4 mai i 2x+7y=77 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7y+4y=77-4
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=77-4
Tāpiri 7y ki te 4y.
11y=73
Tāpiri 77 ki te -4.
y=\frac{73}{11}
Whakawehea ngā taha e rua ki te 11.
x-2\times \frac{73}{11}=2
Whakaurua te \frac{73}{11} mō y ki x-2y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{146}{11}=2
Whakareatia -2 ki te \frac{73}{11}.
x=\frac{168}{11}
Me tāpiri \frac{146}{11} ki ngā taha e rua o te whārite.
x=\frac{168}{11},y=\frac{73}{11}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}