Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+5y=38,x-3y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+5y=38
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-5y+38
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-5y+38\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{5}{2}y+19
Whakareatia \frac{1}{2} ki te -5y+38.
-\frac{5}{2}y+19-3y=-3
Whakakapia te -\frac{5y}{2}+19 mō te x ki tērā atu whārite, x-3y=-3.
-\frac{11}{2}y+19=-3
Tāpiri -\frac{5y}{2} ki te -3y.
-\frac{11}{2}y=-22
Me tango 19 mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{2}\times 4+19
Whakaurua te 4 mō y ki x=-\frac{5}{2}y+19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-10+19
Whakareatia -\frac{5}{2} ki te 4.
x=9
Tāpiri 19 ki te -10.
x=9,y=4
Kua oti te pūnaha te whakatau.
2x+5y=38,x-3y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}38\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&5\\1&-3\end{matrix}\right))\left(\begin{matrix}2&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-3\end{matrix}\right))\left(\begin{matrix}38\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&5\\1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-3\end{matrix}\right))\left(\begin{matrix}38\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-3\end{matrix}\right))\left(\begin{matrix}38\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-5}&-\frac{5}{2\left(-3\right)-5}\\-\frac{1}{2\left(-3\right)-5}&\frac{2}{2\left(-3\right)-5}\end{matrix}\right)\left(\begin{matrix}38\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{5}{11}\\\frac{1}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}38\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 38+\frac{5}{11}\left(-3\right)\\\frac{1}{11}\times 38-\frac{2}{11}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=4
Tangohia ngā huānga poukapa x me y.
2x+5y=38,x-3y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+5y=38,2x+2\left(-3\right)y=2\left(-3\right)
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+5y=38,2x-6y=-6
Whakarūnātia.
2x-2x+5y+6y=38+6
Me tango 2x-6y=-6 mai i 2x+5y=38 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y+6y=38+6
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=38+6
Tāpiri 5y ki te 6y.
11y=44
Tāpiri 38 ki te 6.
y=4
Whakawehea ngā taha e rua ki te 11.
x-3\times 4=-3
Whakaurua te 4 mō y ki x-3y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-12=-3
Whakareatia -3 ki te 4.
x=9
Me tāpiri 12 ki ngā taha e rua o te whārite.
x=9,y=4
Kua oti te pūnaha te whakatau.