Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+4y=1,5x-y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+4y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-4y+1
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-4y+1\right)
Whakawehea ngā taha e rua ki te 2.
x=-2y+\frac{1}{2}
Whakareatia \frac{1}{2} ki te -4y+1.
5\left(-2y+\frac{1}{2}\right)-y=2
Whakakapia te -2y+\frac{1}{2} mō te x ki tērā atu whārite, 5x-y=2.
-10y+\frac{5}{2}-y=2
Whakareatia 5 ki te -2y+\frac{1}{2}.
-11y+\frac{5}{2}=2
Tāpiri -10y ki te -y.
-11y=-\frac{1}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
y=\frac{1}{22}
Whakawehea ngā taha e rua ki te -11.
x=-2\times \frac{1}{22}+\frac{1}{2}
Whakaurua te \frac{1}{22} mō y ki x=-2y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{1}{11}+\frac{1}{2}
Whakareatia -2 ki te \frac{1}{22}.
x=\frac{9}{22}
Tāpiri \frac{1}{2} ki te -\frac{1}{11} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{9}{22},y=\frac{1}{22}
Kua oti te pūnaha te whakatau.
2x+4y=1,5x-y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&4\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&4\\5&-1\end{matrix}\right))\left(\begin{matrix}2&4\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&4\\5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-4\times 5}&-\frac{4}{2\left(-1\right)-4\times 5}\\-\frac{5}{2\left(-1\right)-4\times 5}&\frac{2}{2\left(-1\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}&\frac{2}{11}\\\frac{5}{22}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}+\frac{2}{11}\times 2\\\frac{5}{22}-\frac{1}{11}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{22}\\\frac{1}{22}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{9}{22},y=\frac{1}{22}
Tangohia ngā huānga poukapa x me y.
2x+4y=1,5x-y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 2x+5\times 4y=5,2\times 5x+2\left(-1\right)y=2\times 2
Kia ōrite ai a 2x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
10x+20y=5,10x-2y=4
Whakarūnātia.
10x-10x+20y+2y=5-4
Me tango 10x-2y=4 mai i 10x+20y=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y+2y=5-4
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
22y=5-4
Tāpiri 20y ki te 2y.
22y=1
Tāpiri 5 ki te -4.
y=\frac{1}{22}
Whakawehea ngā taha e rua ki te 22.
5x-\frac{1}{22}=2
Whakaurua te \frac{1}{22} mō y ki 5x-y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x=\frac{45}{22}
Me tāpiri \frac{1}{22} ki ngā taha e rua o te whārite.
x=\frac{9}{22}
Whakawehea ngā taha e rua ki te 5.
x=\frac{9}{22},y=\frac{1}{22}
Kua oti te pūnaha te whakatau.