Whakaoti mō x, y
x=5
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+3y=10
Whakaarohia te whārite tuatahi. Me tāpiri te 10 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
4x-3y=20
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
2x+3y=10,4x-3y=20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+10
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+10\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+5
Whakareatia \frac{1}{2} ki te -3y+10.
4\left(-\frac{3}{2}y+5\right)-3y=20
Whakakapia te -\frac{3y}{2}+5 mō te x ki tērā atu whārite, 4x-3y=20.
-6y+20-3y=20
Whakareatia 4 ki te -\frac{3y}{2}+5.
-9y+20=20
Tāpiri -6y ki te -3y.
-9y=0
Me tango 20 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te -9.
x=5
Whakaurua te 0 mō y ki x=-\frac{3}{2}y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=5,y=0
Kua oti te pūnaha te whakatau.
2x+3y=10
Whakaarohia te whārite tuatahi. Me tāpiri te 10 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
4x-3y=20
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
2x+3y=10,4x-3y=20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}2&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-3\times 4}&-\frac{3}{2\left(-3\right)-3\times 4}\\-\frac{4}{2\left(-3\right)-3\times 4}&\frac{2}{2\left(-3\right)-3\times 4}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 10+\frac{1}{6}\times 20\\\frac{2}{9}\times 10-\frac{1}{9}\times 20\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=0
Tangohia ngā huānga poukapa x me y.
2x+3y=10
Whakaarohia te whārite tuatahi. Me tāpiri te 10 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
4x-3y=20
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
2x+3y=10,4x-3y=20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4\times 3y=4\times 10,2\times 4x+2\left(-3\right)y=2\times 20
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x+12y=40,8x-6y=40
Whakarūnātia.
8x-8x+12y+6y=40-40
Me tango 8x-6y=40 mai i 8x+12y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y+6y=40-40
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
18y=40-40
Tāpiri 12y ki te 6y.
18y=0
Tāpiri 40 ki te -40.
y=0
Whakawehea ngā taha e rua ki te 18.
4x=20
Whakaurua te 0 mō y ki 4x-3y=20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=5
Whakawehea ngā taha e rua ki te 4.
x=5,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}