Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3y=7,x-2y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+7
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+7\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+\frac{7}{2}
Whakareatia \frac{1}{2} ki te -3y+7.
-\frac{3}{2}y+\frac{7}{2}-2y=7
Whakakapia te \frac{-3y+7}{2} mō te x ki tērā atu whārite, x-2y=7.
-\frac{7}{2}y+\frac{7}{2}=7
Tāpiri -\frac{3y}{2} ki te -2y.
-\frac{7}{2}y=\frac{7}{2}
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\left(-1\right)+\frac{7}{2}
Whakaurua te -1 mō y ki x=-\frac{3}{2}y+\frac{7}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3+7}{2}
Whakareatia -\frac{3}{2} ki te -1.
x=5
Tāpiri \frac{7}{2} ki te \frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5,y=-1
Kua oti te pūnaha te whakatau.
2x+3y=7,x-2y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}2&3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-3}&-\frac{3}{2\left(-2\right)-3}\\-\frac{1}{2\left(-2\right)-3}&\frac{2}{2\left(-2\right)-3}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{3}{7}\\\frac{1}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 7+\frac{3}{7}\times 7\\\frac{1}{7}\times 7-\frac{2}{7}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=-1
Tangohia ngā huānga poukapa x me y.
2x+3y=7,x-2y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+3y=7,2x+2\left(-2\right)y=2\times 7
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+3y=7,2x-4y=14
Whakarūnātia.
2x-2x+3y+4y=7-14
Me tango 2x-4y=14 mai i 2x+3y=7 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+4y=7-14
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=7-14
Tāpiri 3y ki te 4y.
7y=-7
Tāpiri 7 ki te -14.
y=-1
Whakawehea ngā taha e rua ki te 7.
x-2\left(-1\right)=7
Whakaurua te -1 mō y ki x-2y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+2=7
Whakareatia -2 ki te -1.
x=5
Me tango 2 mai i ngā taha e rua o te whārite.
x=5,y=-1
Kua oti te pūnaha te whakatau.