Whakaoti mō x, y
x=2.5
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+3y=17,3x-2y=-0.5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=17
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+17
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+17\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+\frac{17}{2}
Whakareatia \frac{1}{2} ki te -3y+17.
3\left(-\frac{3}{2}y+\frac{17}{2}\right)-2y=-0.5
Whakakapia te \frac{-3y+17}{2} mō te x ki tērā atu whārite, 3x-2y=-0.5.
-\frac{9}{2}y+\frac{51}{2}-2y=-0.5
Whakareatia 3 ki te \frac{-3y+17}{2}.
-\frac{13}{2}y+\frac{51}{2}=-0.5
Tāpiri -\frac{9y}{2} ki te -2y.
-\frac{13}{2}y=-26
Me tango \frac{51}{2} mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua o te whārite ki te -\frac{13}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\times 4+\frac{17}{2}
Whakaurua te 4 mō y ki x=-\frac{3}{2}y+\frac{17}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-6+\frac{17}{2}
Whakareatia -\frac{3}{2} ki te 4.
x=\frac{5}{2}
Tāpiri \frac{17}{2} ki te -6.
x=\frac{5}{2},y=4
Kua oti te pūnaha te whakatau.
2x+3y=17,3x-2y=-0.5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\-0.5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}2&3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}17\\-0.5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}17\\-0.5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}17\\-0.5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-3\times 3}&-\frac{3}{2\left(-2\right)-3\times 3}\\-\frac{3}{2\left(-2\right)-3\times 3}&\frac{2}{2\left(-2\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}17\\-0.5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\\frac{3}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}17\\-0.5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 17+\frac{3}{13}\left(-0.5\right)\\\frac{3}{13}\times 17-\frac{2}{13}\left(-0.5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{2},y=4
Tangohia ngā huānga poukapa x me y.
2x+3y=17,3x-2y=-0.5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\times 3y=3\times 17,2\times 3x+2\left(-2\right)y=2\left(-0.5\right)
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+9y=51,6x-4y=-1
Whakarūnātia.
6x-6x+9y+4y=51+1
Me tango 6x-4y=-1 mai i 6x+9y=51 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y+4y=51+1
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
13y=51+1
Tāpiri 9y ki te 4y.
13y=52
Tāpiri 51 ki te 1.
y=4
Whakawehea ngā taha e rua ki te 13.
3x-2\times 4=-0.5
Whakaurua te 4 mō y ki 3x-2y=-0.5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-8=-0.5
Whakareatia -2 ki te 4.
3x=7.5
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=2.5
Whakawehea ngā taha e rua ki te 3.
x=2.5,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}