Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3y=-10,x+4y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y-10
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y-10\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y-5
Whakareatia \frac{1}{2} ki te -3y-10.
-\frac{3}{2}y-5+4y=5
Whakakapia te -\frac{3y}{2}-5 mō te x ki tērā atu whārite, x+4y=5.
\frac{5}{2}y-5=5
Tāpiri -\frac{3y}{2} ki te 4y.
\frac{5}{2}y=10
Me tāpiri 5 ki ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\times 4-5
Whakaurua te 4 mō y ki x=-\frac{3}{2}y-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-6-5
Whakareatia -\frac{3}{2} ki te 4.
x=-11
Tāpiri -5 ki te -6.
x=-11,y=4
Kua oti te pūnaha te whakatau.
2x+3y=-10,x+4y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}2&3\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}-10\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\1&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}-10\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}-10\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3}&-\frac{3}{2\times 4-3}\\-\frac{1}{2\times 4-3}&\frac{2}{2\times 4-3}\end{matrix}\right)\left(\begin{matrix}-10\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}&-\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-10\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\left(-10\right)-\frac{3}{5}\times 5\\-\frac{1}{5}\left(-10\right)+\frac{2}{5}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=-11,y=4
Tangohia ngā huānga poukapa x me y.
2x+3y=-10,x+4y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+3y=-10,2x+2\times 4y=2\times 5
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+3y=-10,2x+8y=10
Whakarūnātia.
2x-2x+3y-8y=-10-10
Me tango 2x+8y=10 mai i 2x+3y=-10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-8y=-10-10
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=-10-10
Tāpiri 3y ki te -8y.
-5y=-20
Tāpiri -10 ki te -10.
y=4
Whakawehea ngā taha e rua ki te -5.
x+4\times 4=5
Whakaurua te 4 mō y ki x+4y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+16=5
Whakareatia 4 ki te 4.
x=-11
Me tango 16 mai i ngā taha e rua o te whārite.
x=-11,y=4
Kua oti te pūnaha te whakatau.