Whakaoti mō x, y, z
x=-1
y=1
z=-2
Tohaina
Kua tāruatia ki te papatopenga
z=-2-2x-2y
Me whakaoti te 2x+2y+z=-2 mō z.
-x-2y+2\left(-2-2x-2y\right)=-5 2x+4y-2-2x-2y=0
Whakakapia te -2-2x-2y mō te z i te whārite tuarua me te tuatoru.
x=-\frac{6}{5}y+\frac{1}{5} y=1
Me whakaoti ēnei whārite mō x me y takitahi.
x=-\frac{6}{5}+\frac{1}{5}
Whakakapia te 1 mō te y i te whārite x=-\frac{6}{5}y+\frac{1}{5}.
x=-1
Tātaitia te x i te x=-\frac{6}{5}+\frac{1}{5}.
z=-2-2\left(-1\right)-2
Whakakapia te -1 mō te x me te 1 mō y i te whārite z=-2-2x-2y.
z=-2
Tātaitia te z i te z=-2-2\left(-1\right)-2.
x=-1 y=1 z=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}