\left. \begin{array} { c } { 12 - 3 ^ { 4 } \cdot ( 6 ^ { 4 } : 2 ^ { 4 } ) + 3 ^ { 8 } = 12 } \\ { 6 ^ { 2 } - ( 4 ^ { 2 } ) ^ { 2 } : ( 2 ^ { 4 } ) = 4 ^ { 2 } } \end{array} \right.
Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
12-3^{4}\times \frac{6^{4}}{2^{4}}+3^{8}=12\text{ and }6^{2}-\frac{4^{4}}{2^{4}}=4^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
12-81\times \frac{6^{4}}{2^{4}}+3^{8}=12\text{ and }6^{2}-\frac{4^{4}}{2^{4}}=4^{2}
Tātaihia te 3 mā te pū o 4, kia riro ko 81.
12-81\times \frac{1296}{2^{4}}+3^{8}=12\text{ and }6^{2}-\frac{4^{4}}{2^{4}}=4^{2}
Tātaihia te 6 mā te pū o 4, kia riro ko 1296.
12-81\times \frac{1296}{16}+3^{8}=12\text{ and }6^{2}-\frac{4^{4}}{2^{4}}=4^{2}
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
12-81\times 81+3^{8}=12\text{ and }6^{2}-\frac{4^{4}}{2^{4}}=4^{2}
Whakawehea te 1296 ki te 16, kia riro ko 81.
12-6561+3^{8}=12\text{ and }6^{2}-\frac{4^{4}}{2^{4}}=4^{2}
Whakareatia te 81 ki te 81, ka 6561.
-6549+3^{8}=12\text{ and }6^{2}-\frac{4^{4}}{2^{4}}=4^{2}
Tangohia te 6561 i te 12, ka -6549.
-6549+6561=12\text{ and }6^{2}-\frac{4^{4}}{2^{4}}=4^{2}
Tātaihia te 3 mā te pū o 8, kia riro ko 6561.
12=12\text{ and }6^{2}-\frac{4^{4}}{2^{4}}=4^{2}
Tāpirihia te -6549 ki te 6561, ka 12.
\text{true}\text{ and }6^{2}-\frac{4^{4}}{2^{4}}=4^{2}
Whakatauritea te 12 me te 12.
\text{true}\text{ and }36-\frac{4^{4}}{2^{4}}=4^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\text{true}\text{ and }36-\frac{256}{2^{4}}=4^{2}
Tātaihia te 4 mā te pū o 4, kia riro ko 256.
\text{true}\text{ and }36-\frac{256}{16}=4^{2}
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
\text{true}\text{ and }36-16=4^{2}
Whakawehea te 256 ki te 16, kia riro ko 16.
\text{true}\text{ and }20=4^{2}
Tangohia te 16 i te 36, ka 20.
\text{true}\text{ and }20=16
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\text{true}\text{ and }\text{false}
Whakatauritea te 20 me te 16.
\text{false}
Ko te kōmititanga tōrunga o \text{true} me \text{false} ko \text{false}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}