Whakaoti mō a, b
a=\frac{8}{11}\approx 0.727272727
b = \frac{30}{11} = 2\frac{8}{11} \approx 2.727272727
Tohaina
Kua tāruatia ki te papatopenga
10a+b=10,-a+b=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
10a+b=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
10a=-b+10
Me tango b mai i ngā taha e rua o te whārite.
a=\frac{1}{10}\left(-b+10\right)
Whakawehea ngā taha e rua ki te 10.
a=-\frac{1}{10}b+1
Whakareatia \frac{1}{10} ki te -b+10.
-\left(-\frac{1}{10}b+1\right)+b=2
Whakakapia te -\frac{b}{10}+1 mō te a ki tērā atu whārite, -a+b=2.
\frac{1}{10}b-1+b=2
Whakareatia -1 ki te -\frac{b}{10}+1.
\frac{11}{10}b-1=2
Tāpiri \frac{b}{10} ki te b.
\frac{11}{10}b=3
Me tāpiri 1 ki ngā taha e rua o te whārite.
b=\frac{30}{11}
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{10}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=-\frac{1}{10}\times \frac{30}{11}+1
Whakaurua te \frac{30}{11} mō b ki a=-\frac{1}{10}b+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-\frac{3}{11}+1
Whakareatia -\frac{1}{10} ki te \frac{30}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=\frac{8}{11}
Tāpiri 1 ki te -\frac{3}{11}.
a=\frac{8}{11},b=\frac{30}{11}
Kua oti te pūnaha te whakatau.
10a+b=10,-a+b=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}10&1\\-1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}10\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}10&1\\-1&1\end{matrix}\right))\left(\begin{matrix}10&1\\-1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}10&1\\-1&1\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}10&1\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}10&1\\-1&1\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}10&1\\-1&1\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-\left(-1\right)}&-\frac{1}{10-\left(-1\right)}\\-\frac{-1}{10-\left(-1\right)}&\frac{10}{10-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}10\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&-\frac{1}{11}\\\frac{1}{11}&\frac{10}{11}\end{matrix}\right)\left(\begin{matrix}10\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 10-\frac{1}{11}\times 2\\\frac{1}{11}\times 10+\frac{10}{11}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{8}{11}\\\frac{30}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
a=\frac{8}{11},b=\frac{30}{11}
Tangohia ngā huānga poukapa a me b.
10a+b=10,-a+b=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
10a+a+b-b=10-2
Me tango -a+b=2 mai i 10a+b=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10a+a=10-2
Tāpiri b ki te -b. Ka whakakore atu ngā kupu b me -b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11a=10-2
Tāpiri 10a ki te a.
11a=8
Tāpiri 10 ki te -2.
a=\frac{8}{11}
Whakawehea ngā taha e rua ki te 11.
-\frac{8}{11}+b=2
Whakaurua te \frac{8}{11} mō a ki -a+b=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
b=\frac{30}{11}
Me tāpiri \frac{8}{11} ki ngā taha e rua o te whārite.
a=\frac{8}{11},b=\frac{30}{11}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}