Whakaoti mō x, y
x=-3
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x+3y=6,-2x+5y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x+3y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=-3y+6
Me tango 3y mai i ngā taha e rua o te whārite.
x=-\left(-3y+6\right)
Whakawehea ngā taha e rua ki te -1.
x=3y-6
Whakareatia -1 ki te -3y+6.
-2\left(3y-6\right)+5y=11
Whakakapia te -6+3y mō te x ki tērā atu whārite, -2x+5y=11.
-6y+12+5y=11
Whakareatia -2 ki te -6+3y.
-y+12=11
Tāpiri -6y ki te 5y.
-y=-1
Me tango 12 mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te -1.
x=3-6
Whakaurua te 1 mō y ki x=3y-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-3
Tāpiri -6 ki te 3.
x=-3,y=1
Kua oti te pūnaha te whakatau.
-x+3y=6,-2x+5y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&3\\-2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&3\\-2&5\end{matrix}\right))\left(\begin{matrix}-1&3\\-2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\-2&5\end{matrix}\right))\left(\begin{matrix}6\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&3\\-2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\-2&5\end{matrix}\right))\left(\begin{matrix}6\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\-2&5\end{matrix}\right))\left(\begin{matrix}6\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-5-3\left(-2\right)}&-\frac{3}{-5-3\left(-2\right)}\\-\frac{-2}{-5-3\left(-2\right)}&-\frac{1}{-5-3\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}6\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}6\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 6-3\times 11\\2\times 6-11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=1
Tangohia ngā huānga poukapa x me y.
-x+3y=6,-2x+5y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\left(-1\right)x-2\times 3y=-2\times 6,-\left(-2\right)x-5y=-11
Kia ōrite ai a -x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
2x-6y=-12,2x-5y=-11
Whakarūnātia.
2x-2x-6y+5y=-12+11
Me tango 2x-5y=-11 mai i 2x-6y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y+5y=-12+11
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=-12+11
Tāpiri -6y ki te 5y.
-y=-1
Tāpiri -12 ki te 11.
y=1
Whakawehea ngā taha e rua ki te -1.
-2x+5=11
Whakaurua te 1 mō y ki -2x+5y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x=6
Me tango 5 mai i ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te -2.
x=-3,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}