Whakaoti mō x, y
x=1
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x+3y=-8,-x-3y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5x+3y=-8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5x=-3y-8
Me tango 3y mai i ngā taha e rua o te whārite.
x=-\frac{1}{5}\left(-3y-8\right)
Whakawehea ngā taha e rua ki te -5.
x=\frac{3}{5}y+\frac{8}{5}
Whakareatia -\frac{1}{5} ki te -3y-8.
-\left(\frac{3}{5}y+\frac{8}{5}\right)-3y=2
Whakakapia te \frac{3y+8}{5} mō te x ki tērā atu whārite, -x-3y=2.
-\frac{3}{5}y-\frac{8}{5}-3y=2
Whakareatia -1 ki te \frac{3y+8}{5}.
-\frac{18}{5}y-\frac{8}{5}=2
Tāpiri -\frac{3y}{5} ki te -3y.
-\frac{18}{5}y=\frac{18}{5}
Me tāpiri \frac{8}{5} ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te -\frac{18}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{5}\left(-1\right)+\frac{8}{5}
Whakaurua te -1 mō y ki x=\frac{3}{5}y+\frac{8}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-3+8}{5}
Whakareatia \frac{3}{5} ki te -1.
x=1
Tāpiri \frac{8}{5} ki te -\frac{3}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-1
Kua oti te pūnaha te whakatau.
-5x+3y=-8,-x-3y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-5\left(-3\right)-3\left(-1\right)}&-\frac{3}{-5\left(-3\right)-3\left(-1\right)}\\-\frac{-1}{-5\left(-3\right)-3\left(-1\right)}&-\frac{5}{-5\left(-3\right)-3\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-8\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&-\frac{1}{6}\\\frac{1}{18}&-\frac{5}{18}\end{matrix}\right)\left(\begin{matrix}-8\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\left(-8\right)-\frac{1}{6}\times 2\\\frac{1}{18}\left(-8\right)-\frac{5}{18}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-1
Tangohia ngā huānga poukapa x me y.
-5x+3y=-8,-x-3y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-\left(-5\right)x-3y=-\left(-8\right),-5\left(-1\right)x-5\left(-3\right)y=-5\times 2
Kia ōrite ai a -5x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -5.
5x-3y=8,5x+15y=-10
Whakarūnātia.
5x-5x-3y-15y=8+10
Me tango 5x+15y=-10 mai i 5x-3y=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-15y=8+10
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-18y=8+10
Tāpiri -3y ki te -15y.
-18y=18
Tāpiri 8 ki te 10.
y=-1
Whakawehea ngā taha e rua ki te -18.
-x-3\left(-1\right)=2
Whakaurua te -1 mō y ki -x-3y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x+3=2
Whakareatia -3 ki te -1.
-x=-1
Me tango 3 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -1.
x=1,y=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}