Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3x+5y=2,x+10y=-24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-3x+5y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-3x=-5y+2
Me tango 5y mai i ngā taha e rua o te whārite.
x=-\frac{1}{3}\left(-5y+2\right)
Whakawehea ngā taha e rua ki te -3.
x=\frac{5}{3}y-\frac{2}{3}
Whakareatia -\frac{1}{3} ki te -5y+2.
\frac{5}{3}y-\frac{2}{3}+10y=-24
Whakakapia te \frac{5y-2}{3} mō te x ki tērā atu whārite, x+10y=-24.
\frac{35}{3}y-\frac{2}{3}=-24
Tāpiri \frac{5y}{3} ki te 10y.
\frac{35}{3}y=-\frac{70}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{35}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{3}\left(-2\right)-\frac{2}{3}
Whakaurua te -2 mō y ki x=\frac{5}{3}y-\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-10-2}{3}
Whakareatia \frac{5}{3} ki te -2.
x=-4
Tāpiri -\frac{2}{3} ki te -\frac{10}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-4,y=-2
Kua oti te pūnaha te whakatau.
-3x+5y=2,x+10y=-24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-3&5\\1&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-3&5\\1&10\end{matrix}\right))\left(\begin{matrix}-3&5\\1&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\1&10\end{matrix}\right))\left(\begin{matrix}2\\-24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-3&5\\1&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\1&10\end{matrix}\right))\left(\begin{matrix}2\\-24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\1&10\end{matrix}\right))\left(\begin{matrix}2\\-24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{-3\times 10-5}&-\frac{5}{-3\times 10-5}\\-\frac{1}{-3\times 10-5}&-\frac{3}{-3\times 10-5}\end{matrix}\right)\left(\begin{matrix}2\\-24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}&\frac{1}{7}\\\frac{1}{35}&\frac{3}{35}\end{matrix}\right)\left(\begin{matrix}2\\-24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}\times 2+\frac{1}{7}\left(-24\right)\\\frac{1}{35}\times 2+\frac{3}{35}\left(-24\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=-2
Tangohia ngā huānga poukapa x me y.
-3x+5y=2,x+10y=-24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3x+5y=2,-3x-3\times 10y=-3\left(-24\right)
Kia ōrite ai a -3x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -3.
-3x+5y=2,-3x-30y=72
Whakarūnātia.
-3x+3x+5y+30y=2-72
Me tango -3x-30y=72 mai i -3x+5y=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y+30y=2-72
Tāpiri -3x ki te 3x. Ka whakakore atu ngā kupu -3x me 3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
35y=2-72
Tāpiri 5y ki te 30y.
35y=-70
Tāpiri 2 ki te -72.
y=-2
Whakawehea ngā taha e rua ki te 35.
x+10\left(-2\right)=-24
Whakaurua te -2 mō y ki x+10y=-24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-20=-24
Whakareatia 10 ki te -2.
x=-4
Me tāpiri 20 ki ngā taha e rua o te whārite.
x=-4,y=-2
Kua oti te pūnaha te whakatau.