Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x+7y=10,3x+7y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x+7y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=-7y+10
Me tango 7y mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(-7y+10\right)
Whakawehea ngā taha e rua ki te -2.
x=\frac{7}{2}y-5
Whakareatia -\frac{1}{2} ki te -7y+10.
3\left(\frac{7}{2}y-5\right)+7y=2
Whakakapia te \frac{7y}{2}-5 mō te x ki tērā atu whārite, 3x+7y=2.
\frac{21}{2}y-15+7y=2
Whakareatia 3 ki te \frac{7y}{2}-5.
\frac{35}{2}y-15=2
Tāpiri \frac{21y}{2} ki te 7y.
\frac{35}{2}y=17
Me tāpiri 15 ki ngā taha e rua o te whārite.
y=\frac{34}{35}
Whakawehea ngā taha e rua o te whārite ki te \frac{35}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{7}{2}\times \frac{34}{35}-5
Whakaurua te \frac{34}{35} mō y ki x=\frac{7}{2}y-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{17}{5}-5
Whakareatia \frac{7}{2} ki te \frac{34}{35} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{8}{5}
Tāpiri -5 ki te \frac{17}{5}.
x=-\frac{8}{5},y=\frac{34}{35}
Kua oti te pūnaha te whakatau.
-2x+7y=10,3x+7y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&7\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&7\\3&7\end{matrix}\right))\left(\begin{matrix}-2&7\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&7\\3&7\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&7\\3&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&7\\3&7\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&7\\3&7\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{-2\times 7-7\times 3}&-\frac{7}{-2\times 7-7\times 3}\\-\frac{3}{-2\times 7-7\times 3}&-\frac{2}{-2\times 7-7\times 3}\end{matrix}\right)\left(\begin{matrix}10\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{1}{5}\\\frac{3}{35}&\frac{2}{35}\end{matrix}\right)\left(\begin{matrix}10\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 10+\frac{1}{5}\times 2\\\frac{3}{35}\times 10+\frac{2}{35}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{5}\\\frac{34}{35}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{8}{5},y=\frac{34}{35}
Tangohia ngā huānga poukapa x me y.
-2x+7y=10,3x+7y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-3x+7y-7y=10-2
Me tango 3x+7y=2 mai i -2x+7y=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2x-3x=10-2
Tāpiri 7y ki te -7y. Ka whakakore atu ngā kupu 7y me -7y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5x=10-2
Tāpiri -2x ki te -3x.
-5x=8
Tāpiri 10 ki te -2.
x=-\frac{8}{5}
Whakawehea ngā taha e rua ki te -5.
3\left(-\frac{8}{5}\right)+7y=2
Whakaurua te -\frac{8}{5} mō x ki 3x+7y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-\frac{24}{5}+7y=2
Whakareatia 3 ki te -\frac{8}{5}.
7y=\frac{34}{5}
Me tāpiri \frac{24}{5} ki ngā taha e rua o te whārite.
y=\frac{34}{35}
Whakawehea ngā taha e rua ki te 7.
x=-\frac{8}{5},y=\frac{34}{35}
Kua oti te pūnaha te whakatau.