Whakaoti mō a, b
a=26
b=-38
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{2}a+b=1,a+\frac{1}{2}b=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{3}{2}a+b=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
\frac{3}{2}a=-b+1
Me tango b mai i ngā taha e rua o te whārite.
a=\frac{2}{3}\left(-b+1\right)
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=-\frac{2}{3}b+\frac{2}{3}
Whakareatia \frac{2}{3} ki te -b+1.
-\frac{2}{3}b+\frac{2}{3}+\frac{1}{2}b=7
Whakakapia te \frac{-2b+2}{3} mō te a ki tērā atu whārite, a+\frac{1}{2}b=7.
-\frac{1}{6}b+\frac{2}{3}=7
Tāpiri -\frac{2b}{3} ki te \frac{b}{2}.
-\frac{1}{6}b=\frac{19}{3}
Me tango \frac{2}{3} mai i ngā taha e rua o te whārite.
b=-38
Me whakarea ngā taha e rua ki te -6.
a=-\frac{2}{3}\left(-38\right)+\frac{2}{3}
Whakaurua te -38 mō b ki a=-\frac{2}{3}b+\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{76+2}{3}
Whakareatia -\frac{2}{3} ki te -38.
a=26
Tāpiri \frac{2}{3} ki te \frac{76}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=26,b=-38
Kua oti te pūnaha te whakatau.
\frac{3}{2}a+b=1,a+\frac{1}{2}b=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{3}{2}&1\\1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{3}{2}&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{3}{2}&1\\1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{3}{2}&1\\1&\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{3}{2}\times \frac{1}{2}-1}&-\frac{1}{\frac{3}{2}\times \frac{1}{2}-1}\\-\frac{1}{\frac{3}{2}\times \frac{1}{2}-1}&\frac{\frac{3}{2}}{\frac{3}{2}\times \frac{1}{2}-1}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-2&4\\4&-6\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-2+4\times 7\\4-6\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}26\\-38\end{matrix}\right)
Mahia ngā tātaitanga.
a=26,b=-38
Tangohia ngā huānga poukapa a me b.
\frac{3}{2}a+b=1,a+\frac{1}{2}b=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{3}{2}a+b=1,\frac{3}{2}a+\frac{3}{2}\times \frac{1}{2}b=\frac{3}{2}\times 7
Kia ōrite ai a \frac{3a}{2} me a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{3}{2}.
\frac{3}{2}a+b=1,\frac{3}{2}a+\frac{3}{4}b=\frac{21}{2}
Whakarūnātia.
\frac{3}{2}a-\frac{3}{2}a+b-\frac{3}{4}b=1-\frac{21}{2}
Me tango \frac{3}{2}a+\frac{3}{4}b=\frac{21}{2} mai i \frac{3}{2}a+b=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
b-\frac{3}{4}b=1-\frac{21}{2}
Tāpiri \frac{3a}{2} ki te -\frac{3a}{2}. Ka whakakore atu ngā kupu \frac{3a}{2} me -\frac{3a}{2}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{1}{4}b=1-\frac{21}{2}
Tāpiri b ki te -\frac{3b}{4}.
\frac{1}{4}b=-\frac{19}{2}
Tāpiri 1 ki te -\frac{21}{2}.
b=-38
Me whakarea ngā taha e rua ki te 4.
a+\frac{1}{2}\left(-38\right)=7
Whakaurua te -38 mō b ki a+\frac{1}{2}b=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a-19=7
Whakareatia \frac{1}{2} ki te -38.
a=26
Me tāpiri 19 ki ngā taha e rua o te whārite.
a=26,b=-38
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}