Whakaoti mō x, y
x=0
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{10}x+\frac{1}{2}y=1,2x-10y=-20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{10}x+\frac{1}{2}y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{10}x=-\frac{1}{2}y+1
Me tango \frac{y}{2} mai i ngā taha e rua o te whārite.
x=10\left(-\frac{1}{2}y+1\right)
Me whakarea ngā taha e rua ki te 10.
x=-5y+10
Whakareatia 10 ki te -\frac{y}{2}+1.
2\left(-5y+10\right)-10y=-20
Whakakapia te -5y+10 mō te x ki tērā atu whārite, 2x-10y=-20.
-10y+20-10y=-20
Whakareatia 2 ki te -5y+10.
-20y+20=-20
Tāpiri -10y ki te -10y.
-20y=-40
Me tango 20 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te -20.
x=-5\times 2+10
Whakaurua te 2 mō y ki x=-5y+10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-10+10
Whakareatia -5 ki te 2.
x=0
Tāpiri 10 ki te -10.
x=0,y=2
Kua oti te pūnaha te whakatau.
\frac{1}{10}x+\frac{1}{2}y=1,2x-10y=-20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}1\\-20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}1\\-20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}1\\-20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}&-\frac{\frac{1}{2}}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}\\-\frac{2}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}&\frac{\frac{1}{10}}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}\end{matrix}\right)\left(\begin{matrix}1\\-20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&\frac{1}{4}\\1&-\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}1\\-20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5+\frac{1}{4}\left(-20\right)\\1-\frac{1}{20}\left(-20\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=2
Tangohia ngā huānga poukapa x me y.
\frac{1}{10}x+\frac{1}{2}y=1,2x-10y=-20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times \frac{1}{10}x+2\times \frac{1}{2}y=2,\frac{1}{10}\times 2x+\frac{1}{10}\left(-10\right)y=\frac{1}{10}\left(-20\right)
Kia ōrite ai a \frac{x}{10} me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{10}.
\frac{1}{5}x+y=2,\frac{1}{5}x-y=-2
Whakarūnātia.
\frac{1}{5}x-\frac{1}{5}x+y+y=2+2
Me tango \frac{1}{5}x-y=-2 mai i \frac{1}{5}x+y=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+y=2+2
Tāpiri \frac{x}{5} ki te -\frac{x}{5}. Ka whakakore atu ngā kupu \frac{x}{5} me -\frac{x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=2+2
Tāpiri y ki te y.
2y=4
Tāpiri 2 ki te 2.
y=2
Whakawehea ngā taha e rua ki te 2.
2x-10\times 2=-20
Whakaurua te 2 mō y ki 2x-10y=-20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-20=-20
Whakareatia -10 ki te 2.
2x=0
Me tāpiri 20 ki ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 2.
x=0,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}