Whakaoti mō k (complex solution)
\left\{\begin{matrix}k=-\frac{x+4y-7}{x}\text{, }&x\neq 0\\k\in \mathrm{C}\text{, }&y=\frac{7}{4}\text{ and }x=0\end{matrix}\right.
Whakaoti mō x (complex solution)
\left\{\begin{matrix}x=-\frac{4y-7}{k+1}\text{, }&k\neq -1\\x\in \mathrm{C}\text{, }&y=\frac{7}{4}\text{ and }k=-1\end{matrix}\right.
Whakaoti mō k
\left\{\begin{matrix}k=-\frac{x+4y-7}{x}\text{, }&x\neq 0\\k\in \mathrm{R}\text{, }&y=\frac{7}{4}\text{ and }x=0\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}x=-\frac{4y-7}{k+1}\text{, }&k\neq -1\\x\in \mathrm{R}\text{, }&y=\frac{7}{4}\text{ and }k=-1\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
kx+x+4y-7=0
Whakamahia te āhuatanga tohatoha hei whakarea te k+1 ki te x.
kx+4y-7=-x
Tangohia te x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
kx-7=-x-4y
Tangohia te 4y mai i ngā taha e rua.
kx=-x-4y+7
Me tāpiri te 7 ki ngā taha e rua.
xk=7-4y-x
He hanga arowhānui tō te whārite.
\frac{xk}{x}=\frac{7-4y-x}{x}
Whakawehea ngā taha e rua ki te x.
k=\frac{7-4y-x}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
kx+x+4y-7=0
Whakamahia te āhuatanga tohatoha hei whakarea te k+1 ki te x.
kx+x-7=-4y
Tangohia te 4y mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
kx+x=-4y+7
Me tāpiri te 7 ki ngā taha e rua.
\left(k+1\right)x=-4y+7
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(k+1\right)x=7-4y
He hanga arowhānui tō te whārite.
\frac{\left(k+1\right)x}{k+1}=\frac{7-4y}{k+1}
Whakawehea ngā taha e rua ki te k+1.
x=\frac{7-4y}{k+1}
Mā te whakawehe ki te k+1 ka wetekia te whakareanga ki te k+1.
kx+x+4y-7=0
Whakamahia te āhuatanga tohatoha hei whakarea te k+1 ki te x.
kx+4y-7=-x
Tangohia te x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
kx-7=-x-4y
Tangohia te 4y mai i ngā taha e rua.
kx=-x-4y+7
Me tāpiri te 7 ki ngā taha e rua.
xk=7-4y-x
He hanga arowhānui tō te whārite.
\frac{xk}{x}=\frac{7-4y-x}{x}
Whakawehea ngā taha e rua ki te x.
k=\frac{7-4y-x}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
kx+x+4y-7=0
Whakamahia te āhuatanga tohatoha hei whakarea te k+1 ki te x.
kx+x-7=-4y
Tangohia te 4y mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
kx+x=-4y+7
Me tāpiri te 7 ki ngā taha e rua.
\left(k+1\right)x=-4y+7
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(k+1\right)x=7-4y
He hanga arowhānui tō te whārite.
\frac{\left(k+1\right)x}{k+1}=\frac{7-4y}{k+1}
Whakawehea ngā taha e rua ki te k+1.
x=\frac{7-4y}{k+1}
Mā te whakawehe ki te k+1 ka wetekia te whakareanga ki te k+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}