Whakaoti mō a
a=b^{3}-2b-9
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\left( a+b \right) =a+ { b }^{ 3 } -2 \left( a+b \right) +a+b-9
Tohaina
Kua tāruatia ki te papatopenga
a+b=a+b^{3}-2a-2b+a+b-9
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te a+b.
a+b=-a+b^{3}-2b+a+b-9
Pahekotia te a me -2a, ka -a.
a+b=b^{3}-2b+b-9
Pahekotia te -a me a, ka 0.
a+b=b^{3}-b-9
Pahekotia te -2b me b, ka -b.
a=b^{3}-b-9-b
Tangohia te b mai i ngā taha e rua.
a=b^{3}-2b-9
Pahekotia te -b me -b, ka -2b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}