Whakaoti mō x
x=2\sqrt{5}-2\approx 2.472135955
x=-2\sqrt{5}-2\approx -6.472135955
Graph
Tohaina
Kua tāruatia ki te papatopenga
21-4x-x^{2}=5
Whakamahia te āhuatanga tuaritanga hei whakarea te 7+x ki te 3-x ka whakakotahi i ngā kupu rite.
21-4x-x^{2}-5=0
Tangohia te 5 mai i ngā taha e rua.
16-4x-x^{2}=0
Tangohia te 5 i te 21, ka 16.
-x^{2}-4x+16=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -4 mō b, me 16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 16}}{2\left(-1\right)}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\times 16}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-4\right)±\sqrt{16+64}}{2\left(-1\right)}
Whakareatia 4 ki te 16.
x=\frac{-\left(-4\right)±\sqrt{80}}{2\left(-1\right)}
Tāpiri 16 ki te 64.
x=\frac{-\left(-4\right)±4\sqrt{5}}{2\left(-1\right)}
Tuhia te pūtakerua o te 80.
x=\frac{4±4\sqrt{5}}{2\left(-1\right)}
Ko te tauaro o -4 ko 4.
x=\frac{4±4\sqrt{5}}{-2}
Whakareatia 2 ki te -1.
x=\frac{4\sqrt{5}+4}{-2}
Nā, me whakaoti te whārite x=\frac{4±4\sqrt{5}}{-2} ina he tāpiri te ±. Tāpiri 4 ki te 4\sqrt{5}.
x=-2\sqrt{5}-2
Whakawehe 4+4\sqrt{5} ki te -2.
x=\frac{4-4\sqrt{5}}{-2}
Nā, me whakaoti te whārite x=\frac{4±4\sqrt{5}}{-2} ina he tango te ±. Tango 4\sqrt{5} mai i 4.
x=2\sqrt{5}-2
Whakawehe 4-4\sqrt{5} ki te -2.
x=-2\sqrt{5}-2 x=2\sqrt{5}-2
Kua oti te whārite te whakatau.
21-4x-x^{2}=5
Whakamahia te āhuatanga tuaritanga hei whakarea te 7+x ki te 3-x ka whakakotahi i ngā kupu rite.
-4x-x^{2}=5-21
Tangohia te 21 mai i ngā taha e rua.
-4x-x^{2}=-16
Tangohia te 21 i te 5, ka -16.
-x^{2}-4x=-16
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-4x}{-1}=-\frac{16}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{4}{-1}\right)x=-\frac{16}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+4x=-\frac{16}{-1}
Whakawehe -4 ki te -1.
x^{2}+4x=16
Whakawehe -16 ki te -1.
x^{2}+4x+2^{2}=16+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=16+4
Pūrua 2.
x^{2}+4x+4=20
Tāpiri 16 ki te 4.
\left(x+2\right)^{2}=20
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{20}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=2\sqrt{5} x+2=-2\sqrt{5}
Whakarūnātia.
x=2\sqrt{5}-2 x=-2\sqrt{5}-2
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}