Aromātai
18x+2
Whakaroha
18x+2
Graph
Tohaina
Kua tāruatia ki te papatopenga
18x^{2}+48x-15x-40-\left(6x-7\right)\left(3x+6\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 6x-5 ki ia tau o 3x+8.
18x^{2}+33x-40-\left(6x-7\right)\left(3x+6\right)
Pahekotia te 48x me -15x, ka 33x.
18x^{2}+33x-40-\left(18x^{2}+36x-21x-42\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 6x-7 ki ia tau o 3x+6.
18x^{2}+33x-40-\left(18x^{2}+15x-42\right)
Pahekotia te 36x me -21x, ka 15x.
18x^{2}+33x-40-18x^{2}-15x-\left(-42\right)
Hei kimi i te tauaro o 18x^{2}+15x-42, kimihia te tauaro o ia taurangi.
18x^{2}+33x-40-18x^{2}-15x+42
Ko te tauaro o -42 ko 42.
33x-40-15x+42
Pahekotia te 18x^{2} me -18x^{2}, ka 0.
18x-40+42
Pahekotia te 33x me -15x, ka 18x.
18x+2
Tāpirihia te -40 ki te 42, ka 2.
18x^{2}+48x-15x-40-\left(6x-7\right)\left(3x+6\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 6x-5 ki ia tau o 3x+8.
18x^{2}+33x-40-\left(6x-7\right)\left(3x+6\right)
Pahekotia te 48x me -15x, ka 33x.
18x^{2}+33x-40-\left(18x^{2}+36x-21x-42\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 6x-7 ki ia tau o 3x+6.
18x^{2}+33x-40-\left(18x^{2}+15x-42\right)
Pahekotia te 36x me -21x, ka 15x.
18x^{2}+33x-40-18x^{2}-15x-\left(-42\right)
Hei kimi i te tauaro o 18x^{2}+15x-42, kimihia te tauaro o ia taurangi.
18x^{2}+33x-40-18x^{2}-15x+42
Ko te tauaro o -42 ko 42.
33x-40-15x+42
Pahekotia te 18x^{2} me -18x^{2}, ka 0.
18x-40+42
Pahekotia te 33x me -15x, ka 18x.
18x+2
Tāpirihia te -40 ki te 42, ka 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}