Whakaoti mō a
a=-4+\frac{20}{x}
x\neq 0
Whakaoti mō x
x=\frac{20}{a+4}
a\neq -4
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\left( 6-a \right) x-20 = -005 { x }^{ 2 } +10x-40
Tohaina
Kua tāruatia ki te papatopenga
6x-ax-20=0\times 0\times 5x^{2}+10x-40
Whakamahia te āhuatanga tohatoha hei whakarea te 6-a ki te x.
6x-ax-20=0\times 5x^{2}+10x-40
Whakareatia te 0 ki te 0, ka 0.
6x-ax-20=0x^{2}+10x-40
Whakareatia te 0 ki te 5, ka 0.
6x-ax-20=0+10x-40
Ko te tau i whakarea ki te kore ka hua ko te kore.
6x-ax-20=-40+10x
Tangohia te 40 i te 0, ka -40.
-ax-20=-40+10x-6x
Tangohia te 6x mai i ngā taha e rua.
-ax-20=-40+4x
Pahekotia te 10x me -6x, ka 4x.
-ax=-40+4x+20
Me tāpiri te 20 ki ngā taha e rua.
-ax=-20+4x
Tāpirihia te -40 ki te 20, ka -20.
\left(-x\right)a=4x-20
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)a}{-x}=\frac{4x-20}{-x}
Whakawehea ngā taha e rua ki te -x.
a=\frac{4x-20}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
a=-4+\frac{20}{x}
Whakawehe -20+4x ki te -x.
6x-ax-20=0\times 0\times 5x^{2}+10x-40
Whakamahia te āhuatanga tohatoha hei whakarea te 6-a ki te x.
6x-ax-20=0\times 5x^{2}+10x-40
Whakareatia te 0 ki te 0, ka 0.
6x-ax-20=0x^{2}+10x-40
Whakareatia te 0 ki te 5, ka 0.
6x-ax-20=0+10x-40
Ko te tau i whakarea ki te kore ka hua ko te kore.
6x-ax-20=-40+10x
Tangohia te 40 i te 0, ka -40.
6x-ax-20-10x=-40
Tangohia te 10x mai i ngā taha e rua.
-4x-ax-20=-40
Pahekotia te 6x me -10x, ka -4x.
-4x-ax=-40+20
Me tāpiri te 20 ki ngā taha e rua.
-4x-ax=-20
Tāpirihia te -40 ki te 20, ka -20.
\left(-4-a\right)x=-20
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(-a-4\right)x=-20
He hanga arowhānui tō te whārite.
\frac{\left(-a-4\right)x}{-a-4}=-\frac{20}{-a-4}
Whakawehea ngā taha e rua ki te -4-a.
x=-\frac{20}{-a-4}
Mā te whakawehe ki te -4-a ka wetekia te whakareanga ki te -4-a.
x=\frac{20}{a+4}
Whakawehe -20 ki te -4-a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}