Whakaoti mō a
a=\frac{x}{20}-4+\frac{20}{x}
x\neq 0
Whakaoti mō x (complex solution)
x=10\sqrt{\left(a+2\right)\left(a+6\right)}+10a+40
x=-10\sqrt{\left(a+2\right)\left(a+6\right)}+10a+40
Whakaoti mō x
x=10\left(\sqrt{\left(a+2\right)\left(a+6\right)}+a+4\right)
x=10\left(-\sqrt{\left(a+2\right)\left(a+6\right)}+a+4\right)\text{, }a\leq -6\text{ or }a\geq -2
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-ax-20=-0.05x^{2}+10x-40
Whakamahia te āhuatanga tohatoha hei whakarea te 6-a ki te x.
-ax-20=-0.05x^{2}+10x-40-6x
Tangohia te 6x mai i ngā taha e rua.
-ax-20=-0.05x^{2}+4x-40
Pahekotia te 10x me -6x, ka 4x.
-ax=-0.05x^{2}+4x-40+20
Me tāpiri te 20 ki ngā taha e rua.
-ax=-0.05x^{2}+4x-20
Tāpirihia te -40 ki te 20, ka -20.
\left(-x\right)a=-\frac{x^{2}}{20}+4x-20
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)a}{-x}=\frac{-\frac{x^{2}}{20}+4x-20}{-x}
Whakawehea ngā taha e rua ki te -x.
a=\frac{-\frac{x^{2}}{20}+4x-20}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
a=\frac{x}{20}-4+\frac{20}{x}
Whakawehe -\frac{x^{2}}{20}+4x-20 ki te -x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}