Whakaoti mō x
x=20
x=30
Graph
Tohaina
Kua tāruatia ki te papatopenga
50x-x^{2}=600
Whakamahia te āhuatanga tohatoha hei whakarea te 50-x ki te x.
50x-x^{2}-600=0
Tangohia te 600 mai i ngā taha e rua.
-x^{2}+50x-600=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-50±\sqrt{50^{2}-4\left(-1\right)\left(-600\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 50 mō b, me -600 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-50±\sqrt{2500-4\left(-1\right)\left(-600\right)}}{2\left(-1\right)}
Pūrua 50.
x=\frac{-50±\sqrt{2500+4\left(-600\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-50±\sqrt{2500-2400}}{2\left(-1\right)}
Whakareatia 4 ki te -600.
x=\frac{-50±\sqrt{100}}{2\left(-1\right)}
Tāpiri 2500 ki te -2400.
x=\frac{-50±10}{2\left(-1\right)}
Tuhia te pūtakerua o te 100.
x=\frac{-50±10}{-2}
Whakareatia 2 ki te -1.
x=-\frac{40}{-2}
Nā, me whakaoti te whārite x=\frac{-50±10}{-2} ina he tāpiri te ±. Tāpiri -50 ki te 10.
x=20
Whakawehe -40 ki te -2.
x=-\frac{60}{-2}
Nā, me whakaoti te whārite x=\frac{-50±10}{-2} ina he tango te ±. Tango 10 mai i -50.
x=30
Whakawehe -60 ki te -2.
x=20 x=30
Kua oti te whārite te whakatau.
50x-x^{2}=600
Whakamahia te āhuatanga tohatoha hei whakarea te 50-x ki te x.
-x^{2}+50x=600
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+50x}{-1}=\frac{600}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{50}{-1}x=\frac{600}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-50x=\frac{600}{-1}
Whakawehe 50 ki te -1.
x^{2}-50x=-600
Whakawehe 600 ki te -1.
x^{2}-50x+\left(-25\right)^{2}=-600+\left(-25\right)^{2}
Whakawehea te -50, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -25. Nā, tāpiria te pūrua o te -25 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-50x+625=-600+625
Pūrua -25.
x^{2}-50x+625=25
Tāpiri -600 ki te 625.
\left(x-25\right)^{2}=25
Tauwehea x^{2}-50x+625. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-25\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-25=5 x-25=-5
Whakarūnātia.
x=30 x=20
Me tāpiri 25 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}