Aromātai
14\left(b+5\right)\left(b+7\right)\left(b+8\right)+1
Whakaroha
14b^{3}+280b^{2}+1834b+3921
Tohaina
Kua tāruatia ki te papatopenga
14\left(b+8\right)\left(b+7\right)\left(b+5\right)+1
Tāpirihia te 5 ki te 9, ka 14.
\left(14b+112\right)\left(b+7\right)\left(b+5\right)+1
Whakamahia te āhuatanga tohatoha hei whakarea te 14 ki te b+8.
\left(14b^{2}+98b+112b+784\right)\left(b+5\right)+1
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 14b+112 ki ia tau o b+7.
\left(14b^{2}+210b+784\right)\left(b+5\right)+1
Pahekotia te 98b me 112b, ka 210b.
14b^{3}+70b^{2}+210b^{2}+1050b+784b+3920+1
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 14b^{2}+210b+784 ki ia tau o b+5.
14b^{3}+280b^{2}+1050b+784b+3920+1
Pahekotia te 70b^{2} me 210b^{2}, ka 280b^{2}.
14b^{3}+280b^{2}+1834b+3920+1
Pahekotia te 1050b me 784b, ka 1834b.
14b^{3}+280b^{2}+1834b+3921
Tāpirihia te 3920 ki te 1, ka 3921.
14\left(b+8\right)\left(b+7\right)\left(b+5\right)+1
Tāpirihia te 5 ki te 9, ka 14.
\left(14b+112\right)\left(b+7\right)\left(b+5\right)+1
Whakamahia te āhuatanga tohatoha hei whakarea te 14 ki te b+8.
\left(14b^{2}+98b+112b+784\right)\left(b+5\right)+1
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 14b+112 ki ia tau o b+7.
\left(14b^{2}+210b+784\right)\left(b+5\right)+1
Pahekotia te 98b me 112b, ka 210b.
14b^{3}+70b^{2}+210b^{2}+1050b+784b+3920+1
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 14b^{2}+210b+784 ki ia tau o b+5.
14b^{3}+280b^{2}+1050b+784b+3920+1
Pahekotia te 70b^{2} me 210b^{2}, ka 280b^{2}.
14b^{3}+280b^{2}+1834b+3920+1
Pahekotia te 1050b me 784b, ka 1834b.
14b^{3}+280b^{2}+1834b+3921
Tāpirihia te 3920 ki te 1, ka 3921.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}