Whakaoti mō x
x=35-\sqrt{1165}\approx 0.867903668
x=\sqrt{1165}+35\approx 69.132096332
Graph
Tohaina
Kua tāruatia ki te papatopenga
1200-70x+x^{2}=1140
Whakamahia te āhuatanga tuaritanga hei whakarea te 40-x ki te 30-x ka whakakotahi i ngā kupu rite.
1200-70x+x^{2}-1140=0
Tangohia te 1140 mai i ngā taha e rua.
60-70x+x^{2}=0
Tangohia te 1140 i te 1200, ka 60.
x^{2}-70x+60=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-70\right)±\sqrt{\left(-70\right)^{2}-4\times 60}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -70 mō b, me 60 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-70\right)±\sqrt{4900-4\times 60}}{2}
Pūrua -70.
x=\frac{-\left(-70\right)±\sqrt{4900-240}}{2}
Whakareatia -4 ki te 60.
x=\frac{-\left(-70\right)±\sqrt{4660}}{2}
Tāpiri 4900 ki te -240.
x=\frac{-\left(-70\right)±2\sqrt{1165}}{2}
Tuhia te pūtakerua o te 4660.
x=\frac{70±2\sqrt{1165}}{2}
Ko te tauaro o -70 ko 70.
x=\frac{2\sqrt{1165}+70}{2}
Nā, me whakaoti te whārite x=\frac{70±2\sqrt{1165}}{2} ina he tāpiri te ±. Tāpiri 70 ki te 2\sqrt{1165}.
x=\sqrt{1165}+35
Whakawehe 70+2\sqrt{1165} ki te 2.
x=\frac{70-2\sqrt{1165}}{2}
Nā, me whakaoti te whārite x=\frac{70±2\sqrt{1165}}{2} ina he tango te ±. Tango 2\sqrt{1165} mai i 70.
x=35-\sqrt{1165}
Whakawehe 70-2\sqrt{1165} ki te 2.
x=\sqrt{1165}+35 x=35-\sqrt{1165}
Kua oti te whārite te whakatau.
1200-70x+x^{2}=1140
Whakamahia te āhuatanga tuaritanga hei whakarea te 40-x ki te 30-x ka whakakotahi i ngā kupu rite.
-70x+x^{2}=1140-1200
Tangohia te 1200 mai i ngā taha e rua.
-70x+x^{2}=-60
Tangohia te 1200 i te 1140, ka -60.
x^{2}-70x=-60
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-70x+\left(-35\right)^{2}=-60+\left(-35\right)^{2}
Whakawehea te -70, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -35. Nā, tāpiria te pūrua o te -35 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-70x+1225=-60+1225
Pūrua -35.
x^{2}-70x+1225=1165
Tāpiri -60 ki te 1225.
\left(x-35\right)^{2}=1165
Tauwehea x^{2}-70x+1225. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-35\right)^{2}}=\sqrt{1165}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-35=\sqrt{1165} x-35=-\sqrt{1165}
Whakarūnātia.
x=\sqrt{1165}+35 x=35-\sqrt{1165}
Me tāpiri 35 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}