Whakaoti mō x
x=10
x=20
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\left( 40-x \right) \left( 20+2x \right) = 1200
Tohaina
Kua tāruatia ki te papatopenga
800+60x-2x^{2}=1200
Whakamahia te āhuatanga tuaritanga hei whakarea te 40-x ki te 20+2x ka whakakotahi i ngā kupu rite.
800+60x-2x^{2}-1200=0
Tangohia te 1200 mai i ngā taha e rua.
-400+60x-2x^{2}=0
Tangohia te 1200 i te 800, ka -400.
-2x^{2}+60x-400=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-60±\sqrt{60^{2}-4\left(-2\right)\left(-400\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 60 mō b, me -400 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\left(-2\right)\left(-400\right)}}{2\left(-2\right)}
Pūrua 60.
x=\frac{-60±\sqrt{3600+8\left(-400\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-60±\sqrt{3600-3200}}{2\left(-2\right)}
Whakareatia 8 ki te -400.
x=\frac{-60±\sqrt{400}}{2\left(-2\right)}
Tāpiri 3600 ki te -3200.
x=\frac{-60±20}{2\left(-2\right)}
Tuhia te pūtakerua o te 400.
x=\frac{-60±20}{-4}
Whakareatia 2 ki te -2.
x=-\frac{40}{-4}
Nā, me whakaoti te whārite x=\frac{-60±20}{-4} ina he tāpiri te ±. Tāpiri -60 ki te 20.
x=10
Whakawehe -40 ki te -4.
x=-\frac{80}{-4}
Nā, me whakaoti te whārite x=\frac{-60±20}{-4} ina he tango te ±. Tango 20 mai i -60.
x=20
Whakawehe -80 ki te -4.
x=10 x=20
Kua oti te whārite te whakatau.
800+60x-2x^{2}=1200
Whakamahia te āhuatanga tuaritanga hei whakarea te 40-x ki te 20+2x ka whakakotahi i ngā kupu rite.
60x-2x^{2}=1200-800
Tangohia te 800 mai i ngā taha e rua.
60x-2x^{2}=400
Tangohia te 800 i te 1200, ka 400.
-2x^{2}+60x=400
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+60x}{-2}=\frac{400}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{60}{-2}x=\frac{400}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-30x=\frac{400}{-2}
Whakawehe 60 ki te -2.
x^{2}-30x=-200
Whakawehe 400 ki te -2.
x^{2}-30x+\left(-15\right)^{2}=-200+\left(-15\right)^{2}
Whakawehea te -30, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -15. Nā, tāpiria te pūrua o te -15 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-30x+225=-200+225
Pūrua -15.
x^{2}-30x+225=25
Tāpiri -200 ki te 225.
\left(x-15\right)^{2}=25
Tauwehea x^{2}-30x+225. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-15\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-15=5 x-15=-5
Whakarūnātia.
x=20 x=10
Me tāpiri 15 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}