Whakaoti mō x
x = \frac{\sqrt{1441} + 39}{2} \approx 38.480252896
x=\frac{39-\sqrt{1441}}{2}\approx 0.519747104
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\left( 40-x \right) \left( 20+20x \right) = 1200
Tohaina
Kua tāruatia ki te papatopenga
800+780x-20x^{2}=1200
Whakamahia te āhuatanga tuaritanga hei whakarea te 40-x ki te 20+20x ka whakakotahi i ngā kupu rite.
800+780x-20x^{2}-1200=0
Tangohia te 1200 mai i ngā taha e rua.
-400+780x-20x^{2}=0
Tangohia te 1200 i te 800, ka -400.
-20x^{2}+780x-400=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-780±\sqrt{780^{2}-4\left(-20\right)\left(-400\right)}}{2\left(-20\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -20 mō a, 780 mō b, me -400 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-780±\sqrt{608400-4\left(-20\right)\left(-400\right)}}{2\left(-20\right)}
Pūrua 780.
x=\frac{-780±\sqrt{608400+80\left(-400\right)}}{2\left(-20\right)}
Whakareatia -4 ki te -20.
x=\frac{-780±\sqrt{608400-32000}}{2\left(-20\right)}
Whakareatia 80 ki te -400.
x=\frac{-780±\sqrt{576400}}{2\left(-20\right)}
Tāpiri 608400 ki te -32000.
x=\frac{-780±20\sqrt{1441}}{2\left(-20\right)}
Tuhia te pūtakerua o te 576400.
x=\frac{-780±20\sqrt{1441}}{-40}
Whakareatia 2 ki te -20.
x=\frac{20\sqrt{1441}-780}{-40}
Nā, me whakaoti te whārite x=\frac{-780±20\sqrt{1441}}{-40} ina he tāpiri te ±. Tāpiri -780 ki te 20\sqrt{1441}.
x=\frac{39-\sqrt{1441}}{2}
Whakawehe -780+20\sqrt{1441} ki te -40.
x=\frac{-20\sqrt{1441}-780}{-40}
Nā, me whakaoti te whārite x=\frac{-780±20\sqrt{1441}}{-40} ina he tango te ±. Tango 20\sqrt{1441} mai i -780.
x=\frac{\sqrt{1441}+39}{2}
Whakawehe -780-20\sqrt{1441} ki te -40.
x=\frac{39-\sqrt{1441}}{2} x=\frac{\sqrt{1441}+39}{2}
Kua oti te whārite te whakatau.
800+780x-20x^{2}=1200
Whakamahia te āhuatanga tuaritanga hei whakarea te 40-x ki te 20+20x ka whakakotahi i ngā kupu rite.
780x-20x^{2}=1200-800
Tangohia te 800 mai i ngā taha e rua.
780x-20x^{2}=400
Tangohia te 800 i te 1200, ka 400.
-20x^{2}+780x=400
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-20x^{2}+780x}{-20}=\frac{400}{-20}
Whakawehea ngā taha e rua ki te -20.
x^{2}+\frac{780}{-20}x=\frac{400}{-20}
Mā te whakawehe ki te -20 ka wetekia te whakareanga ki te -20.
x^{2}-39x=\frac{400}{-20}
Whakawehe 780 ki te -20.
x^{2}-39x=-20
Whakawehe 400 ki te -20.
x^{2}-39x+\left(-\frac{39}{2}\right)^{2}=-20+\left(-\frac{39}{2}\right)^{2}
Whakawehea te -39, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{39}{2}. Nā, tāpiria te pūrua o te -\frac{39}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-39x+\frac{1521}{4}=-20+\frac{1521}{4}
Pūruatia -\frac{39}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-39x+\frac{1521}{4}=\frac{1441}{4}
Tāpiri -20 ki te \frac{1521}{4}.
\left(x-\frac{39}{2}\right)^{2}=\frac{1441}{4}
Tauwehea x^{2}-39x+\frac{1521}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{39}{2}\right)^{2}}=\sqrt{\frac{1441}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{39}{2}=\frac{\sqrt{1441}}{2} x-\frac{39}{2}=-\frac{\sqrt{1441}}{2}
Whakarūnātia.
x=\frac{\sqrt{1441}+39}{2} x=\frac{39-\sqrt{1441}}{2}
Me tāpiri \frac{39}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}