Whakaoti mō x
x=10
x=40
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(10+x\right)\left(600-10x\right)=10000
Tangohia te 30 i te 40, ka 10.
6000+500x-10x^{2}=10000
Whakamahia te āhuatanga tuaritanga hei whakarea te 10+x ki te 600-10x ka whakakotahi i ngā kupu rite.
6000+500x-10x^{2}-10000=0
Tangohia te 10000 mai i ngā taha e rua.
-4000+500x-10x^{2}=0
Tangohia te 10000 i te 6000, ka -4000.
-10x^{2}+500x-4000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-500±\sqrt{500^{2}-4\left(-10\right)\left(-4000\right)}}{2\left(-10\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -10 mō a, 500 mō b, me -4000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-500±\sqrt{250000-4\left(-10\right)\left(-4000\right)}}{2\left(-10\right)}
Pūrua 500.
x=\frac{-500±\sqrt{250000+40\left(-4000\right)}}{2\left(-10\right)}
Whakareatia -4 ki te -10.
x=\frac{-500±\sqrt{250000-160000}}{2\left(-10\right)}
Whakareatia 40 ki te -4000.
x=\frac{-500±\sqrt{90000}}{2\left(-10\right)}
Tāpiri 250000 ki te -160000.
x=\frac{-500±300}{2\left(-10\right)}
Tuhia te pūtakerua o te 90000.
x=\frac{-500±300}{-20}
Whakareatia 2 ki te -10.
x=-\frac{200}{-20}
Nā, me whakaoti te whārite x=\frac{-500±300}{-20} ina he tāpiri te ±. Tāpiri -500 ki te 300.
x=10
Whakawehe -200 ki te -20.
x=-\frac{800}{-20}
Nā, me whakaoti te whārite x=\frac{-500±300}{-20} ina he tango te ±. Tango 300 mai i -500.
x=40
Whakawehe -800 ki te -20.
x=10 x=40
Kua oti te whārite te whakatau.
\left(10+x\right)\left(600-10x\right)=10000
Tangohia te 30 i te 40, ka 10.
6000+500x-10x^{2}=10000
Whakamahia te āhuatanga tuaritanga hei whakarea te 10+x ki te 600-10x ka whakakotahi i ngā kupu rite.
500x-10x^{2}=10000-6000
Tangohia te 6000 mai i ngā taha e rua.
500x-10x^{2}=4000
Tangohia te 6000 i te 10000, ka 4000.
-10x^{2}+500x=4000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-10x^{2}+500x}{-10}=\frac{4000}{-10}
Whakawehea ngā taha e rua ki te -10.
x^{2}+\frac{500}{-10}x=\frac{4000}{-10}
Mā te whakawehe ki te -10 ka wetekia te whakareanga ki te -10.
x^{2}-50x=\frac{4000}{-10}
Whakawehe 500 ki te -10.
x^{2}-50x=-400
Whakawehe 4000 ki te -10.
x^{2}-50x+\left(-25\right)^{2}=-400+\left(-25\right)^{2}
Whakawehea te -50, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -25. Nā, tāpiria te pūrua o te -25 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-50x+625=-400+625
Pūrua -25.
x^{2}-50x+625=225
Tāpiri -400 ki te 625.
\left(x-25\right)^{2}=225
Tauwehea x^{2}-50x+625. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-25\right)^{2}}=\sqrt{225}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-25=15 x-25=-15
Whakarūnātia.
x=40 x=10
Me tāpiri 25 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}