Aromātai
-\frac{29}{168}\approx -0.172619048
Tauwehe
-\frac{29}{168} = -0.17261904761904762
Tohaina
Kua tāruatia ki te papatopenga
\frac{32+3}{8}+\frac{1\times 7+2}{7}-\frac{2\times 14+5}{14}\times \frac{1\times 11+10}{11}-\frac{1\times 3+1}{3}
Whakareatia te 4 ki te 8, ka 32.
\frac{35}{8}+\frac{1\times 7+2}{7}-\frac{2\times 14+5}{14}\times \frac{1\times 11+10}{11}-\frac{1\times 3+1}{3}
Tāpirihia te 32 ki te 3, ka 35.
\frac{35}{8}+\frac{7+2}{7}-\frac{2\times 14+5}{14}\times \frac{1\times 11+10}{11}-\frac{1\times 3+1}{3}
Whakareatia te 1 ki te 7, ka 7.
\frac{35}{8}+\frac{9}{7}-\frac{2\times 14+5}{14}\times \frac{1\times 11+10}{11}-\frac{1\times 3+1}{3}
Tāpirihia te 7 ki te 2, ka 9.
\frac{245}{56}+\frac{72}{56}-\frac{2\times 14+5}{14}\times \frac{1\times 11+10}{11}-\frac{1\times 3+1}{3}
Ko te maha noa iti rawa atu o 8 me 7 ko 56. Me tahuri \frac{35}{8} me \frac{9}{7} ki te hautau me te tautūnga 56.
\frac{245+72}{56}-\frac{2\times 14+5}{14}\times \frac{1\times 11+10}{11}-\frac{1\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{245}{56} me \frac{72}{56}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{317}{56}-\frac{2\times 14+5}{14}\times \frac{1\times 11+10}{11}-\frac{1\times 3+1}{3}
Tāpirihia te 245 ki te 72, ka 317.
\frac{317}{56}-\frac{28+5}{14}\times \frac{1\times 11+10}{11}-\frac{1\times 3+1}{3}
Whakareatia te 2 ki te 14, ka 28.
\frac{317}{56}-\frac{33}{14}\times \frac{1\times 11+10}{11}-\frac{1\times 3+1}{3}
Tāpirihia te 28 ki te 5, ka 33.
\frac{317}{56}-\frac{33}{14}\times \frac{11+10}{11}-\frac{1\times 3+1}{3}
Whakareatia te 1 ki te 11, ka 11.
\frac{317}{56}-\frac{33}{14}\times \frac{21}{11}-\frac{1\times 3+1}{3}
Tāpirihia te 11 ki te 10, ka 21.
\frac{317}{56}-\frac{33\times 21}{14\times 11}-\frac{1\times 3+1}{3}
Me whakarea te \frac{33}{14} ki te \frac{21}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{317}{56}-\frac{693}{154}-\frac{1\times 3+1}{3}
Mahia ngā whakarea i roto i te hautanga \frac{33\times 21}{14\times 11}.
\frac{317}{56}-\frac{9}{2}-\frac{1\times 3+1}{3}
Whakahekea te hautanga \frac{693}{154} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 77.
\frac{317}{56}-\frac{252}{56}-\frac{1\times 3+1}{3}
Ko te maha noa iti rawa atu o 56 me 2 ko 56. Me tahuri \frac{317}{56} me \frac{9}{2} ki te hautau me te tautūnga 56.
\frac{317-252}{56}-\frac{1\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{317}{56} me \frac{252}{56}, me tango rāua mā te tango i ō raua taurunga.
\frac{65}{56}-\frac{1\times 3+1}{3}
Tangohia te 252 i te 317, ka 65.
\frac{65}{56}-\frac{3+1}{3}
Whakareatia te 1 ki te 3, ka 3.
\frac{65}{56}-\frac{4}{3}
Tāpirihia te 3 ki te 1, ka 4.
\frac{195}{168}-\frac{224}{168}
Ko te maha noa iti rawa atu o 56 me 3 ko 168. Me tahuri \frac{65}{56} me \frac{4}{3} ki te hautau me te tautūnga 168.
\frac{195-224}{168}
Tā te mea he rite te tauraro o \frac{195}{168} me \frac{224}{168}, me tango rāua mā te tango i ō raua taurunga.
-\frac{29}{168}
Tangohia te 224 i te 195, ka -29.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}