Whakaoti mō x
x=\frac{1}{3}\approx 0.333333333
x=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2x-3\right)^{2}-\left(x+5\right)\left(x+5\right)=-23
Whakareatia te 2x-3 ki te 2x-3, ka \left(2x-3\right)^{2}.
\left(2x-3\right)^{2}-\left(x+5\right)^{2}=-23
Whakareatia te x+5 ki te x+5, ka \left(x+5\right)^{2}.
4x^{2}-12x+9-\left(x+5\right)^{2}=-23
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-3\right)^{2}.
4x^{2}-12x+9-\left(x^{2}+10x+25\right)=-23
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+5\right)^{2}.
4x^{2}-12x+9-x^{2}-10x-25=-23
Hei kimi i te tauaro o x^{2}+10x+25, kimihia te tauaro o ia taurangi.
3x^{2}-12x+9-10x-25=-23
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}-22x+9-25=-23
Pahekotia te -12x me -10x, ka -22x.
3x^{2}-22x-16=-23
Tangohia te 25 i te 9, ka -16.
3x^{2}-22x-16+23=0
Me tāpiri te 23 ki ngā taha e rua.
3x^{2}-22x+7=0
Tāpirihia te -16 ki te 23, ka 7.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 3\times 7}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -22 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 3\times 7}}{2\times 3}
Pūrua -22.
x=\frac{-\left(-22\right)±\sqrt{484-12\times 7}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-22\right)±\sqrt{484-84}}{2\times 3}
Whakareatia -12 ki te 7.
x=\frac{-\left(-22\right)±\sqrt{400}}{2\times 3}
Tāpiri 484 ki te -84.
x=\frac{-\left(-22\right)±20}{2\times 3}
Tuhia te pūtakerua o te 400.
x=\frac{22±20}{2\times 3}
Ko te tauaro o -22 ko 22.
x=\frac{22±20}{6}
Whakareatia 2 ki te 3.
x=\frac{42}{6}
Nā, me whakaoti te whārite x=\frac{22±20}{6} ina he tāpiri te ±. Tāpiri 22 ki te 20.
x=7
Whakawehe 42 ki te 6.
x=\frac{2}{6}
Nā, me whakaoti te whārite x=\frac{22±20}{6} ina he tango te ±. Tango 20 mai i 22.
x=\frac{1}{3}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=7 x=\frac{1}{3}
Kua oti te whārite te whakatau.
\left(2x-3\right)^{2}-\left(x+5\right)\left(x+5\right)=-23
Whakareatia te 2x-3 ki te 2x-3, ka \left(2x-3\right)^{2}.
\left(2x-3\right)^{2}-\left(x+5\right)^{2}=-23
Whakareatia te x+5 ki te x+5, ka \left(x+5\right)^{2}.
4x^{2}-12x+9-\left(x+5\right)^{2}=-23
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-3\right)^{2}.
4x^{2}-12x+9-\left(x^{2}+10x+25\right)=-23
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+5\right)^{2}.
4x^{2}-12x+9-x^{2}-10x-25=-23
Hei kimi i te tauaro o x^{2}+10x+25, kimihia te tauaro o ia taurangi.
3x^{2}-12x+9-10x-25=-23
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}-22x+9-25=-23
Pahekotia te -12x me -10x, ka -22x.
3x^{2}-22x-16=-23
Tangohia te 25 i te 9, ka -16.
3x^{2}-22x=-23+16
Me tāpiri te 16 ki ngā taha e rua.
3x^{2}-22x=-7
Tāpirihia te -23 ki te 16, ka -7.
\frac{3x^{2}-22x}{3}=-\frac{7}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{22}{3}x=-\frac{7}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{22}{3}x+\left(-\frac{11}{3}\right)^{2}=-\frac{7}{3}+\left(-\frac{11}{3}\right)^{2}
Whakawehea te -\frac{22}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{3}. Nā, tāpiria te pūrua o te -\frac{11}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{22}{3}x+\frac{121}{9}=-\frac{7}{3}+\frac{121}{9}
Pūruatia -\frac{11}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{22}{3}x+\frac{121}{9}=\frac{100}{9}
Tāpiri -\frac{7}{3} ki te \frac{121}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{11}{3}\right)^{2}=\frac{100}{9}
Tauwehea x^{2}-\frac{22}{3}x+\frac{121}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{3}\right)^{2}}=\sqrt{\frac{100}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{3}=\frac{10}{3} x-\frac{11}{3}=-\frac{10}{3}
Whakarūnātia.
x=7 x=\frac{1}{3}
Me tāpiri \frac{11}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}