Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-mx^{2}-\left(3m+1\right)x+4=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2-m ki te x^{2}.
2x^{2}-mx^{2}-\left(3mx+x\right)+4=0
Whakamahia te āhuatanga tohatoha hei whakarea te 3m+1 ki te x.
2x^{2}-mx^{2}-3mx-x+4=0
Hei kimi i te tauaro o 3mx+x, kimihia te tauaro o ia taurangi.
-mx^{2}-3mx-x+4=-2x^{2}
Tangohia te 2x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-mx^{2}-3mx+4=-2x^{2}+x
Me tāpiri te x ki ngā taha e rua.
-mx^{2}-3mx=-2x^{2}+x-4
Tangohia te 4 mai i ngā taha e rua.
\left(-x^{2}-3x\right)m=-2x^{2}+x-4
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\frac{\left(-x^{2}-3x\right)m}{-x^{2}-3x}=\frac{-2x^{2}+x-4}{-x^{2}-3x}
Whakawehea ngā taha e rua ki te -x^{2}-3x.
m=\frac{-2x^{2}+x-4}{-x^{2}-3x}
Mā te whakawehe ki te -x^{2}-3x ka wetekia te whakareanga ki te -x^{2}-3x.
m=\frac{-2x^{2}+x-4}{-x\left(x+3\right)}
Whakawehe -2x^{2}+x-4 ki te -x^{2}-3x.